首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5521篇
  免费   621篇
  国内免费   2篇
系统科学   1073篇
理论与方法论   275篇
现状及发展   878篇
研究方法   20篇
综合类   3896篇
自然研究   2篇
  2018年   727篇
  2017年   732篇
  2016年   433篇
  2015年   31篇
  2014年   5篇
  2013年   2篇
  2012年   263篇
  2011年   956篇
  2010年   817篇
  2009年   454篇
  2008年   523篇
  2007年   766篇
  2006年   14篇
  2005年   46篇
  2004年   133篇
  2003年   153篇
  2002年   61篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有6144条查询结果,搜索用时 0 毫秒
141.
In this review I argue that Puech draws on two important currents in modern thought: the criticism of the ontological and social priority of conflict, and the rehabilitation of praxis vis-à-vis theoria. Still, his plea for a non-confrontational art of living leaves important questions unanswered. What is the problem exactly? What does exactly count as (non)confrontational? What is non-confrontation exactly meant to solve? What is the antiposition here? And: how does this new (or rather: old) art of living relate to the political and ethical varieties of Technology Assessment?  相似文献   
142.
Multicellular organisms contain numerous symbiotic microorganisms, collectively called microbiomes. Recently, microbiomic research has shown that these microorganisms are responsible for the proper functioning of many of the systems (digestive, immune, nervous, etc.) of multicellular organisms. This has inclined some scholars to argue that it is about time to reconceptualise the organism and to develop a concept that would place the greatest emphasis on the vital role of microorganisms in the life of plants and animals. We believe that, unfortunately, there is a problem with this suggestion, since there is no such thing as a universal concept of the organism which could constitute a basis for all biological sciences. Rather, the opposite is true: numerous alternative definitions exist. Therefore, comprehending how microbiomics is changing our understanding of organisms may be a very complex matter. In this paper we will demonstrate that this pluralism proves that claims about a change in our understanding of organisms can be treated as both true and untrue. Mainly, we assert that the existing concepts differ substantially, and that only some of them have to be reconsidered in order to incorporate the discoveries of microbiomics, while others are already flexible enough to do so. Taking into account the plurality of conceptualisations within different branches of modern biology, we will conduct our discussion using the developmental and the cooperation–conflict concepts of the organism. Then we will explain our results by referring to the recent philosophical debate on the nature of the concept of the organism within biology.  相似文献   
143.
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus–host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.  相似文献   
144.
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer’s and Parkinson’s diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.  相似文献   
145.
Mesenchymal stem cells (MSCs) are heterogeneous likely consisting of subpopulations with various therapeutic potentials. Here we attempted to acquire a subset of MSCs with enhanced effect in wound healing. We found that human placental MSCs expressing platelet-derived growth factor (PDGF) receptor (PDGFR)-β exhibited greater proliferation rates and generated more colony-forming unit-fibroblast (CFU-F), compared to PDGFR-β? MSCs. Notably, PDGFR-β+ MSCs expressed higher levels of pro-angiogenic factors such as Ang1, Ang2, VEGF, bFGF and PDGF. When 106 GFP-expressing MSCs were topically applied into excisional wounds in mice, PDGFR-β+ MSCs actively incorporated into the wound tissue, resulting in enhanced engraftment (3.92 ± 0.31 × 105 remained in wound by 7 days) and accelerated wound closure; meanwhile, PDGFR-β? MSCs tended to remain on the top of the wound bed with significantly fewer cells (2.46 ± 0.26 × 105) engrafted into the wound, suggesting enhanced chemotactic migration and engraftment of PDGFR-β+ MSCs into the wound. Real-Time PCR and immunostain analyses revealed that the expression of PDGF-B was upregulated after wounding; transwell migration assay showed that PDGFR-β+ MSCs migrated eightfold more than PDGFR-β? MSCs toward PDGF-BB. Intriguingly, PDGFR-β+ MSC-treated wounds showed significantly enhanced angiogenesis compared to PDGFR-β? MSC- or vehicle-treated wounds. Thus, our results indicate that PDGFR-β identifies a subset of MSCs with enhanced chemotactic migration to wound injury and effect in promoting angiogenesis and wound healing, implying a greater therapeutic potential for certain diseases.  相似文献   
146.
147.
148.
149.
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号