首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44288篇
  免费   142篇
  国内免费   166篇
系统科学   352篇
丛书文集   872篇
教育与普及   108篇
理论与方法论   169篇
现状及发展   19785篇
研究方法   1672篇
综合类   20851篇
自然研究   787篇
  2013年   315篇
  2012年   599篇
  2011年   1359篇
  2010年   261篇
  2008年   709篇
  2007年   853篇
  2006年   799篇
  2005年   846篇
  2004年   891篇
  2003年   791篇
  2002年   771篇
  2001年   1296篇
  2000年   1243篇
  1999年   817篇
  1992年   811篇
  1991年   640篇
  1990年   681篇
  1989年   627篇
  1988年   622篇
  1987年   649篇
  1986年   656篇
  1985年   897篇
  1984年   640篇
  1983年   541篇
  1982年   472篇
  1981年   512篇
  1980年   638篇
  1979年   1391篇
  1978年   1096篇
  1977年   1040篇
  1976年   885篇
  1975年   934篇
  1974年   1275篇
  1973年   1090篇
  1972年   1167篇
  1971年   1337篇
  1970年   1799篇
  1969年   1411篇
  1968年   1241篇
  1967年   1275篇
  1966年   1178篇
  1965年   884篇
  1964年   277篇
  1959年   502篇
  1958年   867篇
  1957年   625篇
  1956年   502篇
  1955年   456篇
  1954年   503篇
  1948年   344篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
931.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.  相似文献   
932.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   
933.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.  相似文献   
934.
Since their discovery, cell-penetrating peptides (CPPs) have provided a novel, efficient, and non-invasive mode of transport for various (bioactive) cargos into cells. Despite the ever-growing number of successful implications of the CPP-mediated delivery, issues concerning their intracellular trafficking, significant targeting to degradative organelles, and limited endosomal escape are still hindering their widespread use. To overcome these obstacles, we have utilized a potent photo-induction technique with a fluorescently labeled protein cargo attached to an efficient CPP, TP10. In this study we have determined some key requirements behind this induced escape (e.g., dependence on peptide-to-cargo ratio, time and cargo), and have semi-quantitatively assessed the characteristics of the endosomes that become leaky upon this treatment. Furthermore, we provide evidence that the photo-released cargo remains intact and functional. Altogether, we can conclude that the photo-induced endosomes are specific large complexes-condensed non-acidic vesicles, where the released cargo remains in its native intact form. The latter was confirmed with tubulin as the cargo, which upon photo-induction was incorporated into microtubules. Because of this, we propose that combining the CPP-mediated delivery with photo-activation technique could provide a simple method for overcoming major limitations faced today and serve as a basis for enhanced delivery efficiency and a subsequent elevated cellular response of different bioactive cargo molecules.  相似文献   
935.
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.  相似文献   
936.
937.
938.
Schizophrenia is an etiologically heterogeneous psychiatric disease, which exists in familial and nonfamilial (sporadic) forms. Here, we examine the possibility that rare de novo copy number (CN) mutations with relatively high penetrance contribute to the genetic component of schizophrenia. We carried out a whole-genome scan and implemented a number of steps for finding and confirming CN mutations. Confirmed de novo mutations were significantly associated with schizophrenia (P = 0.00078) and were collectively approximately 8 times more frequent in sporadic (but not familial) cases with schizophrenia than in unaffected controls. In comparison, rare inherited CN mutations were only modestly enriched in sporadic cases. Our results suggest that rare de novo germline mutations contribute to schizophrenia vulnerability in sporadic cases and that rare genetic lesions at many different loci can account, at least in part, for the genetic heterogeneity of this disease.  相似文献   
939.
940.
Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号