首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   4篇
系统科学   6篇
丛书文集   2篇
理论与方法论   3篇
现状及发展   56篇
研究方法   37篇
综合类   63篇
自然研究   10篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   13篇
  2011年   23篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   8篇
  2006年   12篇
  2005年   7篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2000年   2篇
  1997年   2篇
  1995年   1篇
  1986年   1篇
  1979年   2篇
  1978年   3篇
  1976年   4篇
  1975年   4篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1968年   5篇
  1967年   1篇
  1966年   3篇
  1964年   1篇
  1963年   1篇
  1945年   1篇
排序方式: 共有177条查询结果,搜索用时 265 毫秒
1.
2.
Pillitteri LJ  Sloan DB  Bogenschutz NL  Torii KU 《Nature》2007,445(7127):501-505
Stomata consist of a pair of guard cells that mediate gas and water-vapour exchange between plants and the atmosphere. Stomatal precursor cells-meristemoids-possess a transient stem-cell-like property and undergo several rounds of asymmetric divisions before further differentiation. Here we report that the Arabidopsis thaliana basic helix-loop-helix (bHLH) protein MUTE is a key switch for meristemoid fate transition. In the absence of MUTE, meristemoids abort after excessive asymmetric divisions and fail to differentiate stomata. Constitutive overexpression of MUTE directs the entire epidermis to adopt guard cell identity. MUTE has two paralogues: FAMA, a regulator of guard cell morphogenesis, and SPEECHLESS (SPCH). We show that SPCH directs the first asymmetric division that initiates stomatal lineage. Together, SPCH, MUTE and FAMA bHLH proteins control stomatal development at three consecutive steps: initiation, meristemoid differentiation and guard cell morphogenesis. Our findings highlight the roles of closely related bHLHs in cell type differentiation in plants and animals.  相似文献   
3.
4.
Oxysterols direct immune cell migration via EBI2   总被引:1,自引:0,他引:1  
Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7α,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7α,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7α,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.  相似文献   
5.
Lloyd K  White J 《Nature》2011,474(7351):277-278
  相似文献   
6.
Peça J  Feliciano C  Ting JT  Wang W  Wells MF  Venkatraman TN  Lascola CD  Fu Z  Feng G 《Nature》2011,472(7344):437-442
Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.  相似文献   
7.
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.  相似文献   
8.
9.
Patterns of colonization by macroinvertebrates were examined in two streams that differ in flow regime: a snowmelt system and a mesic groundwater system. Experiments were conducted during spring runoff, summer baseflow, and winter baseflow using artificial substrata. Colonization patterns reflected seasonal changes in benthic macroinvertebrate assemblages and life histories in each stream. The density and biomass of benthic organisms were approximately 3X greater in winter than in either spring or summer for both streams. Similarly, colonization was greater in winter than in spring or summer for both streams. In spring, colonization patterns were different between streams, with colonization being imperceptible in the snowmelt stream. Macroinvertebrate abundance fluctuated during the summer colonization experiment at both sites, resulting from a complex interplay among population emergence, recruitment, and/or movement. Assemblages in the snowmelt system primarily comprised mobile or ruderal taxa, such as Beatis tricaudatus and Chironomidae, whereas relatively sessile taxa, such as Glossoma nigrior , were predominant in the mesic groundwater system. Seasonal patterns of colonization differed among stream types primarily because of the profound interplay of flow regime and temperature on benthic community structure and organism life history.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号