首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6365篇
  免费   628篇
  国内免费   34篇
系统科学   1087篇
丛书文集   2篇
教育与普及   3篇
理论与方法论   285篇
现状及发展   1056篇
研究方法   131篇
综合类   4437篇
自然研究   26篇
  2020年   5篇
  2019年   5篇
  2018年   732篇
  2017年   739篇
  2016年   437篇
  2015年   41篇
  2014年   21篇
  2013年   20篇
  2012年   323篇
  2011年   1039篇
  2010年   845篇
  2009年   477篇
  2008年   557篇
  2007年   826篇
  2006年   54篇
  2005年   103篇
  2004年   159篇
  2003年   210篇
  2002年   108篇
  2001年   40篇
  2000年   43篇
  1999年   20篇
  1996年   4篇
  1992年   10篇
  1991年   10篇
  1990年   4篇
  1989年   10篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1983年   3篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1977年   10篇
  1976年   5篇
  1975年   9篇
  1974年   5篇
  1973年   9篇
  1972年   3篇
  1971年   9篇
  1970年   9篇
  1969年   7篇
  1968年   5篇
  1967年   8篇
  1966年   5篇
  1965年   7篇
排序方式: 共有7027条查询结果,搜索用时 671 毫秒
981.
The wear of cutting tools in the machining of 2024Al alloy composites reinforced with Al2O3 particles using varying sizes and volume fractions of particles up to 23.3vol% was investigated by a turning process using coated carbide tools K10 and TP30 at different cutting speeds. Machining tests were performed with a plan of experiments based on the Taguchi method. The tool life model was developed in terms of cutting speed, size, and volume fraction of particles by multiple linear regressions. The analysis of variance (ANOVA) was also employed to carry out the effects of these parameters on the cutting tool life. The test results show that the tool life decreases with the increase of cutting speed for both cutting tools K10 and TP30, and the tool life of the K10 tool is significantly longer than that of the TP30 tool. For the tool life, cutting speed is found to be the most effective factor followed by particle content and particle size, respectively. The predicted tool life of cutting tools is found to be in very good agreement with the experimentally observed ones.  相似文献   
982.
The Zr62.55Cu17.55Ni9.9Al10 bulk metallic glass (BMG) was prepared by using copper-mold suction-casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability. Uniaxial compression and Rockwell indentation tests were adopted to study the plastic deformation behavior at room temperature. The results show that the glass transition temperature and the onset temperature of exothermic reaction of the BMG are 651.5 and 748 K, respectively. During the compression test, the BMGs undergo an engineering strain of about 2.5%, i.e., true strain of 2.8%, and then fracture. The BMGs deform via the formation and propagation of shear bands. Under indentation loading, the BMGs deform through the formation of radiation-like and circular shear bands. The circular shear bands form earlier than the radiation-like ones. The formation mechanism of shear bands in the BMGs was analyzed and discussed.  相似文献   
983.
The process model for BOF process can be applied to predict the liquid steel composition and bath temperature during the whole steelmaking process. On the basis of the traditional three-stage decarburization theory, the concept of mixing degree was put forward, which was used to indicate the effect of oxygen jet on decarburization. Furthermore, a more practical process model for BOF steelmaking was developed by analyzing the effect of silicon, manganese, oxygen injection rate, oxygen lance height, and bath temperature on decarburization. Process verification and end-point verification for the process model have been carried out, and the verification results show that the prediction accuracy of carbon content reaches 82.6% (the range of carbon content at the end-point is less than 0.1wt%) and 85.7% (the range of carbon content at end-point is 0.1wt%–0.7wt%) when the absolute error is less than 0.02wt% and 0.05wt%, respectively.  相似文献   
984.
Nanocrystalline single-phase alloys with the nominal compositions (at%) of Nd12.3-xDyxFe79.7Zr0.8Nb0.8Cu0.4B6.0 (x=0, 0.5, 1.5, and 2.5) were prepared by melt-spinning and subsequent annealing. X-ray diffraction analysis shows that the as-spun ribbons were mainly composed of the amorphous phase. A slight content of Dy stabilizes the amorphous phase during annealing treatment. The grain size becomes smaller and the coercivity of the annealed ribbon is gradually improved with the increase of Dy content. Excessive Dy is harmful to the remanence. It is found that no intergranular phase exists between the grains by high-resolution transmission electron microscopy, and the grain boundaries are crystallographically coherent in the optimally annealed sample. The optimum magnetic properties of remanence (Jr=1.09 T), coercivity (Hci=1048 kA/m), and maximum magnetic energy product ((BH)m=169.5 kJ/m3) are obtained from the x=0.5 ribbon in a post heat-treated state (700℃, 10 min).  相似文献   
985.
A mathematical model, accounting for the sulfuric acid and ferric ions diffusion and the copper sulfide mineral leaching process, was developed for an ore particle by considering its porous structure. It was simulated with the simulation tool COMSOL Multiphysics. The simulation results show that the highest acid and ferric concentrations near the particle surface are apparent, while the concentrations in the central particle increase slightly as the less-porous ore core with low permeability prevents the oxidation from penetrating. The extraction of the mineral near the particle surface is the maximum, mainly because of ample sulfuric acid, ferric ions, bacteria, and oxygen available for the leaching process. Because of low oxidation concentration in the central part of the particle, the reaction rate and copper sulphide conversion are small. The simulation shows good agreement with the experimental results.  相似文献   
986.
A new route of impurity rejection to remove ferric iron from a synthetic nickel leach solution was introduced, which simulated the chemical composition of a typical acid leach solution of nickel laterites under atmospheric pressure. The synthetic solution underwent a stepwise neutralization process, with each step adopting different pH value-temperature combinations. In a conventional nickel atmospheric leach (AL) process, the nickel loss could be as high as 10wt%, which was a longstanding issue and prevented this process from commercialization. The new impurity rejection route is the first step towards resolving this issue. The results show that, the best neutralization performance is achieved at the nickel loss of 3.4wt% in the neutralization scheme that employs ethylenediaminetetraacetic acid as a nickel stabilizer (pH: 1.3–3.5; temperature: 95–70℃)  相似文献   
987.
The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA), and so on, were investigated in detail. Besides, the high temperature behavior and function of sintering were obtained. As a result, the techniques for ore-proportioning in sintering were obtained. The results show that Yandi ore possessing higher assimilation ability, better liquid phase fluidity, lower self-strength of bonding phase, and better forming ability of SFCA, should be mixed with iron ores whose properties are opposite to those of Yandi ore. In the optimization of sintering ore-proportioning, Yandi ore, whose price is relatively low, can be mixed as high as 40wt%.  相似文献   
988.
In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simulated results were compared with those of the experiment. The numerical simulation results, such as fracture propagation, microcrack distribution, stress-strain response, and damage patterns, were discussed in detail. The simulated results under various confining pressures (0–60 MPa) are in good agreement with the experimental results. The simulated results reveal that rock failure is caused by axial splitting under uniaxial compression. As the confining pressure increases, rock failure occurs in a few localized shear planes and the rock mechanical behavior is changed from brittle to ductile. Consequently, the peak failure strength, microcrack numbers, and the shear plane angle increase, but the ratio of tensile to shear microcracks decreases. The damage formation during the compression simulations indicates that the particle simulation method can produce similar behaviors as those observed through laboratory compression tests.  相似文献   
989.
Based on the production practice of medium carbon thin slabs in the CSP plant, the reasons and influencing factors for the formation of longitudinal cracks were investigated, and some industrial measures were taken to eliminate the cracks. The results show that the efficient solutions to reduce longitudinal cracks are improving the performance of the mold powder, stabilizing the mold heat flux, and maintaining a proper taper of the mold during casting. Proper pouring temperature and secondary cooling also play important roles in preventing longitudinal surface cracks.  相似文献   
990.
MgO·Al2O3 spinel type inclusions in casing steel were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results show that there are three forms. One is pure MgO·Al2O3 spinel, another is the composite oxide of the Mg-Al-Ca-Si-O system, and the third is the complex with oxide as a core covered by sulfide. The formation mechanisms were studied. The influences of slag basicity and vacuum degree on the magnesium content during the vacuum treatment of molten steel and furnace lining in molten steel were calculated with the coexistence theory of slag structure. The results show that the magnesium content increases with the increase in slag basicity and aluminum content in molten steel, and decreases with the increase in CO partial pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号