首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7326篇
  免费   606篇
  国内免费   18篇
系统科学   1100篇
丛书文集   2篇
教育与普及   11篇
理论与方法论   313篇
现状及发展   1065篇
研究方法   309篇
综合类   5041篇
自然研究   109篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   730篇
  2017年   739篇
  2016年   448篇
  2015年   45篇
  2014年   22篇
  2013年   29篇
  2012年   429篇
  2011年   1236篇
  2010年   886篇
  2009年   466篇
  2008年   637篇
  2007年   961篇
  2006年   165篇
  2005年   217篇
  2004年   280篇
  2003年   298篇
  2002年   219篇
  2001年   7篇
  2000年   8篇
  1999年   11篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1967年   3篇
  1966年   1篇
  1961年   1篇
排序方式: 共有7950条查询结果,搜索用时 15 毫秒
971.
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.  相似文献   
972.
973.
974.
975.
John D. Norton is responsible for a number of influential views in contemporary philosophy of science. This paper will discuss two of them. The material theory of induction claims that inductive arguments are ultimately justified by their material features, not their formal features. Thus, while a deductive argument can be valid irrespective of the content of the propositions that make up the argument, an inductive argument about, say, apples, will be justified (or not) depending on facts about apples. The argument view of thought experiments claims that thought experiments are arguments, and that they function epistemically however arguments do. These two views have generated a great deal of discussion, although there hasn't been much written about their combination. I argue that despite some interesting harmonies, there is a serious tension between them. I consider several options for easing this tension, before suggesting a set of changes to the argument view that I take to be consistent with Norton's fundamental philosophical commitments, and which retain what seems intuitively correct about the argument view. These changes require that we move away from a unitary epistemology of thought experiments and towards a more pluralist position.  相似文献   
976.
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole’s protective actions. Melatonin’s mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.  相似文献   
977.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   
978.
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.  相似文献   
979.
Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0–2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号