首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   2篇
系统科学   9篇
教育与普及   2篇
理论与方法论   3篇
现状及发展   40篇
研究方法   96篇
综合类   290篇
自然研究   26篇
  2023年   1篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   56篇
  2011年   78篇
  2010年   13篇
  2009年   4篇
  2008年   53篇
  2007年   43篇
  2006年   42篇
  2005年   32篇
  2004年   38篇
  2003年   23篇
  2002年   29篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1983年   1篇
  1974年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有466条查询结果,搜索用时 0 毫秒
321.
CEACAM1 regulates insulin clearance in liver   总被引:8,自引:0,他引:8  
We hypothesized that insulin stimulates phosphorylation of CEACAM1 which in turn leads to upregulation of receptor-mediated insulin endocytosis and degradation in the hepatocyte. We have generated transgenic mice over-expressing in liver a dominant-negative, phosphorylation-defective S503A-CEACAM1 mutant. Supporting our hypothesis, we found that S503A-CEACAM1 transgenic mice developed hyperinsulinemia resulting from impaired insulin clearance. The hyperinsulinemia caused secondary insulin resistance with impaired glucose tolerance and random, but not fasting, hyperglycemia. Transgenic mice developed visceral adiposity with increased amounts of plasma free fatty acids and plasma and hepatic triglycerides. These findings suggest a mechanism through which insulin signaling regulates insulin sensitivity by modulating hepatic insulin clearance.  相似文献   
322.
MAP kinase signalling cascade in Arabidopsis innate immunity   总被引:29,自引:0,他引:29  
  相似文献   
323.
Rac GTPases control axon growth, guidance and branching   总被引:14,自引:0,他引:14  
Ng J  Nardine T  Harms M  Tzu J  Goldstein A  Sun Y  Dietzl G  Dickson BJ  Luo L 《Nature》2002,416(6879):442-447
Growth, guidance and branching of axons are all essential processes for the precise wiring of the nervous system. Rho family GTPases transduce extracellular signals to regulate the actin cytoskeleton. In particular, Rac has been implicated in axon growth and guidance. Here we analyse the loss-of-function phenotypes of three Rac GTPases in Drosophila mushroom body neurons. We show that progressive loss of combined Rac1, Rac2 and Mtl activity leads first to defects in axon branching, then guidance, and finally growth. Expression of a Rac1 effector domain mutant that does not bind Pak rescues growth, partially rescues guidance, but does not rescue branching defects of Rac mutant neurons. Mosaic analysis reveals both cell autonomous and non-autonomous functions for Rac GTPases, the latter manifesting itself as a strong community effect in axon guidance and branching. These results demonstrate the central role of Rac GTPases in multiple aspects of axon development in vivo, and suggest that axon growth, guidance and branching could be controlled by differential activation of Rac signalling pathways.  相似文献   
324.
A component of innate immunity prevents bacterial biofilm development   总被引:51,自引:0,他引:51  
Singh PK  Parsek MR  Greenberg EP  Welsh MJ 《Nature》2002,417(6888):552-555
Antimicrobial factors form one arm of the innate immune system, which protects mucosal surfaces from bacterial infection. These factors can rapidly kill bacteria deposited on mucosal surfaces and prevent acute invasive infections. In many chronic infections, however, bacteria live in biofilms, which are distinct, matrix-encased communities specialized for surface persistence. The transition from a free-living, independent existence to a biofilm lifestyle can be devastating, because biofilms notoriously resist killing by host defence mechanisms and antibiotics. We hypothesized that the innate immune system possesses specific activity to protect against biofilm infections. Here we show that lactoferrin, a ubiquitous and abundant constituent of human external secretions, blocks biofilm development by the opportunistic pathogen Pseudomonas aeruginosa. This occurs at lactoferrin concentrations below those that kill or prevent growth. By chelating iron, lactoferrin stimulates twitching, a specialized form of surface motility, causing the bacteria to wander across the surface instead of forming cell clusters and biofilms. These findings reveal a specific anti-biofilm defence mechanism acting at a critical juncture in biofilm development, the time bacteria stop roaming as individuals and aggregate into durable communities.  相似文献   
325.
326.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.  相似文献   
327.
Haney MM  Snieder R  Sheiman J  Losh S 《Nature》2005,437(7055):46
In the Gulf of Mexico, fault zones are linked with a complex and dynamic system of plumbing in the Earth's subsurface. Here we use time-lapse seismic-reflection imaging to reveal a pulse of fluid ascending rapidly inside one of these fault zones. Such intermittent fault 'burping' is likely to be an important factor in the migration of subsurface hydrocarbons.  相似文献   
328.
Neale MJ  Pan J  Keeney S 《Nature》2005,436(7053):1053-1057
DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.  相似文献   
329.
The identification of common variants that contribute to the genesis of human inherited disorders remains a significant challenge. Hirschsprung disease (HSCR) is a multifactorial, non-mendelian disorder in which rare high-penetrance coding sequence mutations in the receptor tyrosine kinase RET contribute to risk in combination with mutations at other genes. We have used family-based association studies to identify a disease interval, and integrated this with comparative and functional genomic analysis to prioritize conserved and functional elements within which mutations can be sought. We now show that a common non-coding RET variant within a conserved enhancer-like sequence in intron 1 is significantly associated with HSCR susceptibility and makes a 20-fold greater contribution to risk than rare alleles do. This mutation reduces in vitro enhancer activity markedly, has low penetrance, has different genetic effects in males and females, and explains several features of the complex inheritance pattern of HSCR. Thus, common low-penetrance variants, identified by association studies, can underlie both common and rare diseases.  相似文献   
330.
Permanent modification of the human genome in vivo is impractical owing to the low frequency of homologous recombination in human cells, a fact that hampers biomedical research and progress towards safe and effective gene therapy. Here we report a general solution using two fundamental biological processes: DNA recognition by C2H2 zinc-finger proteins and homology-directed repair of DNA double-strand breaks. Zinc-finger proteins engineered to recognize a unique chromosomal site can be fused to a nuclease domain, and a double-strand break induced by the resulting zinc-finger nuclease can create specific sequence alterations by stimulating homologous recombination between the chromosome and an extrachromosomal DNA donor. We show that zinc-finger nucleases designed against an X-linked severe combined immune deficiency (SCID) mutation in the IL2Rgamma gene yielded more than 18% gene-modified human cells without selection. Remarkably, about 7% of the cells acquired the desired genetic modification on both X chromosomes, with cell genotype accurately reflected at the messenger RNA and protein levels. We observe comparably high frequencies in human T cells, raising the possibility of strategies based on zinc-finger nucleases for the treatment of disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号