首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1703篇
  免费   2篇
  国内免费   13篇
系统科学   75篇
丛书文集   3篇
教育与普及   7篇
理论与方法论   26篇
现状及发展   196篇
研究方法   275篇
综合类   1007篇
自然研究   129篇
  2021年   6篇
  2020年   13篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   11篇
  2014年   18篇
  2013年   40篇
  2012年   116篇
  2011年   280篇
  2010年   41篇
  2009年   20篇
  2008年   132篇
  2007年   164篇
  2006年   139篇
  2005年   118篇
  2004年   124篇
  2003年   135篇
  2002年   156篇
  2001年   11篇
  2000年   14篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   13篇
  1989年   8篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1971年   5篇
  1970年   2篇
  1965年   1篇
  1958年   1篇
  1956年   1篇
排序方式: 共有1718条查询结果,搜索用时 0 毫秒
61.
Neurofibromatosis type 2 is an autosomal dominant disorder characterized by tumors, predominantly schwannomas, in the nervous system. It is caused by mutations in the gene NF2, encoding the growth regulator schwannomin (also known as merlin). Mutations occur throughout the 17-exon gene, with most resulting in protein truncation and undetectable amounts of schwannomin protein. Pathogenic mutations that result in production of defective schwannomin include in-frame deletions of exon 2 and three independent missense mutations within this same exon. Mice with conditional deletion of exon 2 in Schwann cells develop schwannomas, which confirms the crucial nature of exon 2 for growth control. Here we report that the molecular adaptor paxillin binds directly to schwannomin at residues 50-70, which are encoded by exon 2. This interaction mediates the membrane localization of schwannomin to the plasma membrane, where it associates with beta 1 integrin and erbB2. It defines a pathogenic mechanism for the development of NF2 in humans with mutations in exon 2 of NF2.  相似文献   
62.
63.
The L1 retrotransposon has had an immense impact on the size and structure of the human genome through a variety of mechanisms, including insertional mutagenesis. To study retrotransposition in a living organism, we created a mouse model of human L1 retrotransposition. Here we show that L1 elements can retrotranspose in male germ cells, and that expression of a human L1 element under the control of its endogenous promoter is restricted to testis and ovary. In the mouse line with the highest level of L1 expression, we found two de novo L1 insertions in 135 offspring. Both insertions were structurally indistinguishable from natural endogenous insertions. This suggests that an individual L1 element can have substantial mutagenic potential. In addition to providing a valuable in vivo model of retrotransposition in mammals, these mice are an important step in the development of a new random mutagenesis system.  相似文献   
64.
Kimple RJ  Kimple ME  Betts L  Sondek J  Siderovski DP 《Nature》2002,416(6883):878-881
Heterotrimeric G-proteins bind to cell-surface receptors and are integral in transmission of signals from outside the cell. Upon activation of the Galpha subunit by binding of GTP, the Galpha and Gbetagamma subunits dissociate and interact with effector proteins for signal transduction. Regulatory proteins with the 19-amino-acid GoLoco motif can bind to Galpha subunits and maintain G-protein subunit dissociation in the absence of Galpha activation. Here we describe the structural determinants of GoLoco activity as revealed by the crystal structure of Galpha(i1) GDP bound to the GoLoco region of the 'regulator of G-protein signalling' protein RGS14. Key contacts are described between the GoLoco motif and Galpha protein, including the extension of GoLoco's highly conserved Asp/Glu-Gln-Arg triad into the nucleotide-binding pocket of Galpha to make direct contact with the GDP alpha- and beta-phosphates. The structural organization of the GoLoco Galpha(i1) complex, when combined with supporting data from domain-swapping experiments, suggests that the Galpha all-helical domain and GoLoco-region carboxy-terminal residues control the specificity of GoLoco Galpha interactions.  相似文献   
65.
66.
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.  相似文献   
67.
Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss.  相似文献   
68.
Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte, the gene encoding NTE. Nte(-/-) mice die after embryonic day 8, and Nte(+/-) mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte(+/-) and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.  相似文献   
69.
70.
The Action Research (AR) PhD program at Monash University had its genesis in Systems Thinking and Organizational Learning. This paper discusses the role of the university in AR projects in business and the central role that AR projects can have in a Faculty's strategic positioning. The issues that have emerged in the project to date are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号