首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57576篇
  免费   326篇
  国内免费   735篇
系统科学   1414篇
丛书文集   452篇
教育与普及   318篇
理论与方法论   529篇
现状及发展   31717篇
研究方法   851篇
综合类   21164篇
自然研究   2192篇
  2014年   502篇
  2013年   1011篇
  2012年   870篇
  2011年   2939篇
  2010年   696篇
  2009年   869篇
  2008年   1069篇
  2007年   1222篇
  2006年   1313篇
  2005年   1379篇
  2004年   2363篇
  2003年   1909篇
  2002年   1604篇
  2001年   1361篇
  2000年   961篇
  1999年   1009篇
  1998年   668篇
  1997年   787篇
  1996年   538篇
  1994年   686篇
  1993年   692篇
  1992年   867篇
  1991年   767篇
  1990年   823篇
  1989年   643篇
  1988年   593篇
  1987年   628篇
  1986年   683篇
  1985年   817篇
  1984年   758篇
  1983年   637篇
  1982年   783篇
  1981年   814篇
  1980年   911篇
  1979年   1338篇
  1978年   1227篇
  1977年   1215篇
  1976年   1083篇
  1975年   1071篇
  1974年   958篇
  1973年   1184篇
  1972年   1247篇
  1971年   1239篇
  1970年   1288篇
  1969年   1213篇
  1968年   1162篇
  1967年   1072篇
  1966年   884篇
  1965年   729篇
  1958年   526篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid beta peptide (Abeta) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Abeta-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.  相似文献   
992.
The bacterial genus Bartonella comprises 21 pathogens causing characteristic intraerythrocytic infections. Bartonella bacilliformis is a severe pathogen representing an ancestral lineage, whereas the other species are benign pathogens that evolved by radial speciation. Here, we have used comparative and functional genomics to infer pathogenicity genes specific to the radiating lineage, and we suggest that these genes may have facilitated adaptation to the host environment. We determined the complete genome sequence of Bartonella tribocorum by shotgun sequencing and functionally identified 97 pathogenicity genes by signature-tagged mutagenesis. Eighty-one pathogenicity genes belong to the core genome (1,097 genes) of the radiating lineage inferred from genome comparison of B. tribocorum, Bartonella henselae and Bartonella quintana. Sixty-six pathogenicity genes are present in B. bacilliformis, and one has been lost by deletion. The 14 pathogenicity genes specific for the radiating lineage encode two laterally acquired type IV secretion systems, suggesting that these systems have a role in host adaptability.  相似文献   
993.
994.
On the design and analysis of gene expression studies in human populations   总被引:2,自引:0,他引:2  
Akey JM  Biswas S  Leek JT  Storey JD 《Nature genetics》2007,39(7):807-8; author reply 808-9
  相似文献   
995.
Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.  相似文献   
996.
Peutz-Jeghers syndrome: clinicopathology and molecular alterations   总被引:5,自引:0,他引:5  
Peutz-Jeghers syndrome (PJS, OMIM 175200) is an unusual inherited intestinal polyposis syndrome associated with distinct peri-oral blue/black freckling [1–9]. Variable penetrance and clinical heterogeneity make it difficult to determine the exact frequency of PJS [4]. PJS is a cancer predisposition syndrome. Affected individuals are at high risk for intestinal and extra-intestinal cancers. In 1997, linkage studies mapped PJS to chromosome 19p [10, 11], and subsequently a serine/threonine kinase gene defect (LKB1) was noted in a majority of PJS cases [12, 13]. A phenotypically similar syndrome has been produced in an LKB1 mouse knockout model [14–18]. Several PJS kindred without LKB1 mutations have been described, suggesting other PJS loci [19–22]. The management of PJS is complex and evolving. New endoscopic technologies may improve management of intestinal polyposis. Identification of specific genetic mutations and their targets will more accurately assess the clinical course, and help gage the magnitude of cancer risk for affected individuals. Received 20 February 2006; received after revision 5 May 2006; accepted 15 June 2006  相似文献   
997.
Site- and state-specific lysine methylation of histones is catalyzed by a family of proteins that contain the evolutionarily conserved SET domain and plays a fundamental role in epigenetic regulation of gene activation and silencing in all eukaryotes. The recently determined three-dimensional structures of the SET domains from chromosomal proteins reveal that the core SET domain structure contains a two-domain architecture, consisting of a conserved anti-parallel β-barrel and a structurally variable insert that surround a unusual knot-like structure that comprises the enzyme active site. These structures of the SET domains, either in the free state or when bound to cofactor S-adenosyl-L-homocysteine and/or histone peptide, mimicking an enzyme/cofactor/substrate complex, further yield the structural insights into the molecular basis of the substrate specificity, methylation multiplicity and the catalytic mechanism of histone lysine methylation. Received 10 June 2006; accepted 22 August 2006  相似文献   
998.
A challenging task for the adaptive immune system of vertebrates is to identify and eliminate intracellular antigens. Therefore a highly specialized antigen presentation machinery has evolved to display fragments of newly synthesized proteins to effector cells of the immune system at the cell surface. After proteasomal degradation of unwanted proteins or defective ribosome products, resulting peptides are translocated into the endoplasmic reticulum by the transporter associated with antigen processing and loaded onto major histocompatibility complex (MHC) class I molecules. Peptide-MHC I complexes are transported via the secretory pathway to the cell surface where they are then inspected by cytotoxic T lymphocytes, which can trigger an immune response. This review summarizes the current view of the intracellular machinery of antigen processing and of viral immune escape mechanisms to circumvent destruction by the host. Received 4 October 2005; received after revision 19 November 2005; accepted 24 November 2005  相似文献   
999.
The mammalian olfactory system is not uniformly organized but consists of several subsystems each of which probably serves distinct functions. Not only are the two major nasal chemosensory systems, the vomeronasal organ and the main olfactory epithelium, structurally and functionally separate entities, but the latter is further subcompartimentalized into overlapping expression zones and projection-related subzones. Moreover, the populations of ‘OR37’ neurons not only express a unique type of olfactory receptors but also are segregated in a cluster-like manner and generally project to only one receptor-specific glomerulus. The septal organ is an island of sensory epithelium on the nasal septum positioned at the nasoplatine duct; it is considered as a ‘mini-nose’ with dual function. A specific chemosensory function of the most recently discovered subsystem, the so-called Grueneberg ganglion, is based on the expression of olfactory marker protein and the axonal projections to defined glomeruli within the olfactory bulb. This complexity of distinct olfactory subsystems may be one of the features determining the enormous chemosensory capacity of the sense of smell.  相似文献   
1000.
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported. Received 6 October 2005; received after revision 14 December 2005; accepted 27 December 2005 †These authors contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号