首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   3篇
  国内免费   1篇
丛书文集   1篇
理论与方法论   5篇
现状及发展   36篇
研究方法   27篇
综合类   94篇
自然研究   3篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   16篇
  2010年   3篇
  2009年   4篇
  2008年   16篇
  2007年   18篇
  2006年   22篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1986年   1篇
  1982年   1篇
  1979年   2篇
  1974年   1篇
  1969年   2篇
  1968年   2篇
  1965年   1篇
  1961年   1篇
  1946年   5篇
  1945年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
61.
Discovery of an aurora on Mars   总被引:1,自引:0,他引:1  
In the high-latitude regions of Earth, aurorae are the often-spectacular visual manifestation of the interaction between electrically charged particles (electrons, protons or ions) with the neutral upper atmosphere, as they precipitate along magnetic field lines. More generally, auroral emissions in planetary atmospheres "are those that result from the impact of particles other than photoelectrons" (ref. 1). Auroral activity has been found on all four giant planets possessing a magnetic field (Jupiter, Saturn, Uranus and Neptune), as well as on Venus, which has no magnetic field. On the nightside of Venus, atomic O emissions at 130.4 nm and 135.6 nm appear in bright patches of varying sizes and intensities, which are believed to be produced by electrons with energy <300 eV (ref. 7). Here we report the discovery of an aurora in the martian atmosphere, using the ultraviolet spectrometer SPICAM on board Mars Express. It corresponds to a distinct type of aurora not seen before in the Solar System: it is unlike aurorae at Earth and the giant planets, which lie at the foot of the intrinsic magnetic field lines near the magnetic poles, and unlike venusian auroras, which are diffuse, sometimes spreading over the entire disk. Instead, the martian aurora is a highly concentrated and localized emission controlled by magnetic field anomalies in the martian crust.  相似文献   
62.
Aléon J  Robert F  Duprat J  Derenne S 《Nature》2005,437(7057):385-388
The origins of the building blocks of the Solar System can be studied using the isotopic composition of early planetary and meteoritic material. Oxygen isotopes in planetary materials show variations at the per cent level that are not related to the mass of the isotopes; rather, they result from the mixture of components having different nucleosynthetic or chemical origins. Isotopic variations reaching orders of magnitude in minute meteoritic grains are usually attributed to stellar nucleosynthesis before the birth of the Solar System, whereby different grains were contributed by different stars. Here we report the discovery of abundant silica-rich grains embedded in meteoritic organic matter, having the most extreme 18O/16O and 17O/16O ratios observed (both approximately 10(-1)) together with a solar silicon isotopic composition. Both O and Si isotopes indicate a single nucleosynthetic process. These compositions can be accounted for by one of two processes: a single exotic evolved star seeding the young Solar System, or irradiation of the circumsolar gas by high energy particles accelerated during an active phase of the young Sun. We favour the latter interpretation, because the observed compositions are usually not expected from nucleosynthetic processes in evolved stars, whereas they are predicted by the selective trapping of irradiation products.  相似文献   
63.
64.
Autotaxin     
Autotaxin is a protein of approximately 900 amino acids discovered in the early 1990s. Over the past 15 years, a strong association between cancer cells and autotaxin production has been observed. Recent publications indicate that autotaxin and the capacity of cancer to metastasise are intimately linked. The discovery of new molecular targets in pharmacology is a mixture of pure luck, hard work and industrial strategy. Despite a crucial and desperate need for new therapeutic tools, many targets are approached in oncology, but only a few are validated and end up at the patient bed. Outside the busy domain of kinases, few targets have been discovered that can be useful in treating cancer, particularly metastatic processes. The fortuitous relationship between autotaxin and lysophosphatidic acid renders the results of observations made in the diabetes/obesity context considerably important. The literature provides observations that may aid in redesigning experiments to validate autotaxin as a potential oncology target.  相似文献   
65.
66.
The cell is a crowded volume, with estimated mean mass percentage of macromolecules and of water ranging from 7.5 to 45 and 55 to 92.5 %, respectively. However, the concentrations of macromolecules and water at the nanoscale within the various cell compartments are unknown. We recently developed a new approach, correlative cryo-analytical scanning transmission electron microscopy, for mapping the quantity of water within compartments previously shown to display GFP-tagged protein fluorescence on the same ultrathin cryosection. Using energy-dispersive X-ray spectrometry (EDXS), we then identified various elements (C, N, O, P, S, K, Cl, Mg) in these compartments and quantified them in mmol/l. Here, we used this new approach to quantify water and elements in the cytosol, mitochondria, condensed chromatin, nucleoplasm, and nucleolar components of control and stressed cancerous cells. The water content of the control cells was between 60 and 83 % (in the mitochondria and nucleolar fibrillar centers, respectively). Potassium was present at concentrations of 128–462 mmol/l in nucleolar fibrillar centers and condensed chromatin, respectively. The induction of nucleolar stress by treatment with a low dose of actinomycin-D to inhibit rRNA synthesis resulted in both an increase in water content and a decrease in the elements content in all cell compartments. We generated a nanoscale map of water and elements within the cell compartments, providing insight into their changes induced by nucleolar stress.  相似文献   
67.
Summary A general survey of the actual knowledges on the bone phosphatase is given. The enzyme plays an important rôle in the calcification of bone and teeth, this process being unable to proceed at a physiological speed without the participation of a phosphatase. The biological function of the enzyme is thus to accelerate and not to promote the calcification.The knowledge of the mechanism of phosphatase activity in the skeletal organs and of the chemical composition of the bone salt cannot lead to a full understanding of the physiology of ossification. A prominent function in this field is devoted to the proteins of the ground substance of bone and to their evolution. The study of the protein matrix of bone is now the most important subject of work for the biochemistry of ossification.

Conférence faite le 28 mai 1946 au Hallerianum de l'Université de Berne.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号