首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   2篇
系统科学   6篇
教育与普及   2篇
理论与方法论   24篇
现状及发展   29篇
研究方法   54篇
综合类   158篇
自然研究   32篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   19篇
  2011年   59篇
  2010年   4篇
  2008年   19篇
  2007年   29篇
  2006年   25篇
  2005年   24篇
  2004年   19篇
  2003年   14篇
  2002年   15篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   7篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1965年   2篇
  1964年   2篇
  1963年   1篇
排序方式: 共有305条查询结果,搜索用时 46 毫秒
141.
Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean's nitrogen inventory and primary productivity. Nitrogen-isotope data from ocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000?years (ref. 4). Producing a balanced marine-nitrogen budget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200?Tg?N?yr?1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimates N2-fixation rates by an average of 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and γ-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14?±?1?Tg?N?yr?1 and 24?±1?Tg?N?yr?1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103?±?8?Tg?N?yr?1 to 177?±?8?Tg?N?yr?1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought.  相似文献   
142.
143.
Antibiotics in early life alter the murine colonic microbiome and adiposity   总被引:1,自引:0,他引:1  
Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.  相似文献   
144.
145.
146.
Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1beta, IL-18 (interferon (IFN)-gamma inducing factor) and IFN-gamma, but not tumour-necrosis factor-alpha and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-gamma pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-gamma receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1beta production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.  相似文献   
147.
148.
Dystrophic epidermolysis bullosa (DEB) is a family of inherited mechano-bullous disorders caused by mutations in the human type VII collagen gene (COL7A1). Individuals with DEB lack type VII collagen and anchoring fibrils, structures that attach epidermis and dermis. The current lack of treatment for DEB is an impetus to develop gene therapy strategies that efficiently transfer and stably express genes delivered to skin cells in vivo. In this study, we delivered and expressed full-length type VII collagen using a self-inactivating minimal lentivirus-based vector. Transduction of lentiviral vectors containing the COL7A1 transgene into recessive DEB (RDEB) keratinocytes and fibroblasts (in which type VII collagen was absent) resulted in persistent synthesis and secretion of type VII collagen. Unlike RDEB parent cells, the gene-corrected cells had normal morphology, proliferative potential, matrix attachment and motility. We used these gene-corrected cells to regenerate human skin on immune-deficient mice. Human skin regenerated by gene-corrected RDEB cells had restored expression of type VII collagen and formation of anchoring fibrils at the dermal-epidermal junction in vivo. These studies demonstrate that it is possible to restore type VII collagen gene expression in RDEB skin in vivo.  相似文献   
149.
Finney BP  Gregory-Eaves I  Douglas MS  Smol JP 《Nature》2002,416(6882):729-733
Historical catch records suggest that climatic variability has had basin-wide effects on the northern Pacific and its fish populations, such as salmon, sardines and anchovies. However, these records are too short to define the nature and frequency of patterns. We reconstructed approximately 2,200-year records of sockeye salmon abundance from sediment cores obtained from salmon nursery lakes on Kodiak island, Alaska. Large shifts in abundance, which far exceed the decadal-scale variability recorded during the past 300 years, occurred over the past two millennia. A marked, multi-centennial decline in Alaskan sockeye salmon was apparent from approximately 100 BC to AD 800, but salmon were consistently more abundant from AD 1200 to 1900. Over the past two millennia, the abundances of Pacific sardine and Northern anchovy off the California coast, and of Alaskan salmon, show several synchronous patterns of variability. But sardines and anchovies vary out of phase with Alaskan salmon over low frequency, which differs from the pattern detected in historical records. The coherent patterns observed across large regions demonstrate the strong role of climatic forcing in regulating northeastern Pacific fish stocks.  相似文献   
150.
The highly reduced genome of an enslaved algal nucleus   总被引:34,自引:0,他引:34  
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号