首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2603篇
  免费   9篇
  国内免费   25篇
系统科学   44篇
丛书文集   2篇
教育与普及   11篇
理论与方法论   41篇
现状及发展   291篇
研究方法   362篇
综合类   1787篇
自然研究   99篇
  2022年   4篇
  2021年   12篇
  2020年   4篇
  2019年   6篇
  2018年   25篇
  2017年   16篇
  2016年   29篇
  2015年   22篇
  2014年   22篇
  2013年   44篇
  2012年   201篇
  2011年   350篇
  2010年   72篇
  2009年   10篇
  2008年   222篇
  2007年   231篇
  2006年   222篇
  2005年   249篇
  2004年   253篇
  2003年   187篇
  2002年   242篇
  2001年   5篇
  2000年   17篇
  1999年   11篇
  1998年   4篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   9篇
  1982年   10篇
  1981年   10篇
  1980年   4篇
  1979年   14篇
  1978年   10篇
  1977年   9篇
  1974年   5篇
  1973年   7篇
  1972年   4篇
  1971年   6篇
  1970年   6篇
  1967年   5篇
排序方式: 共有2637条查询结果,搜索用时 0 毫秒
241.
White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America. The disease's name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS. However, the role of G. destructans in WNS remains controversial because evidence to implicate the fungus as the primary cause of this disease is lacking. The debate is fuelled, in part, by the assumption that fungal infections in mammals are most commonly associated with immune system dysfunction. Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats of Europe, where no unusual bat mortality events have been reported, has generated further speculation that the fungus is an opportunistic pathogen and that other unidentified factors are the primary cause of WNS. Here we demonstrate that exposure of healthy little brown bats (Myotis lucifugus) to pure cultures of G. destructans causes WNS. Live G. destructans was subsequently cultured from diseased bats, successfully fulfilling established criteria for the determination of G. destructans as a primary pathogen. We also confirmed that WNS can be transmitted from infected bats to healthy bats through direct contact. Our results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America may represent translocation of the fungus to a region with a naive population of animals. Demonstration of causality is an instrumental step in elucidating the pathogenesis and epidemiology of WNS and in guiding management actions to preserve bat populations against the novel threat posed by this devastating infectious disease.  相似文献   
242.
The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). (13)C/(12)C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than ~40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.  相似文献   
243.
244.
Li Q  Tullis TE  Goldsby D  Carpick RW 《Nature》2011,480(7376):233-236
Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults.  相似文献   
245.
Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.  相似文献   
246.
247.
Cyranoski D 《Nature》2012,482(7383):18-19
  相似文献   
248.
Jessop PG  Heldebrant DJ  Li X  Eckert CA  Liotta CL 《Nature》2005,436(7054):1102
Imagine a smart solvent that can be switched reversibly from a liquid with one set of properties to another that has very different properties, upon command. Here we create such a system, in which a non-ionic liquid (an alcohol and an amine base) converts to an ionic liquid (a salt in liquid form) upon exposure to an atmosphere of carbon dioxide, and then reverts back to its non-ionic form when exposed to nitrogen or argon gas. Such switchable solvents should facilitate organic syntheses and separations by eliminating the need to remove and replace solvents after each reaction step.  相似文献   
249.
250.
Eathiraj S  Pan X  Ritacco C  Lambright DG 《Nature》2005,436(7049):415-419
Rab GTPases regulate all stages of membrane trafficking, including vesicle budding, cargo sorting, transport, tethering and fusion. In the inactive (GDP-bound) conformation, accessory factors facilitate the targeting of Rab GTPases to intracellular compartments. After nucleotide exchange to the active (GTP-bound) conformation, Rab GTPases interact with functionally diverse effectors including lipid kinases, motor proteins and tethering complexes. How effectors distinguish between homologous Rab GTPases represents an unresolved problem with respect to the specificity of vesicular trafficking. Using a structural proteomic approach, we have determined the specificity and structural basis underlying the interaction of the multivalent effector rabenosyn-5 with the Rab family. The results demonstrate that even the structurally similar effector domains in rabenosyn-5 can achieve highly selective recognition of distinct subsets of Rab GTPases exclusively through interactions with the switch and interswitch regions. The observed specificity is determined at a family-wide level by structural diversity in the active conformation, which governs the spatial disposition of critical conserved recognition determinants, and by a small number of both positive and negative sequence determinants that allow further discrimination between Rab GTPases with similar switch conformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号