首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43955篇
  免费   1193篇
  国内免费   1880篇
系统科学   1507篇
丛书文集   1548篇
教育与普及   1874篇
理论与方法论   171篇
现状及发展   197篇
研究方法   152篇
综合类   41568篇
自然研究   11篇
  2024年   237篇
  2023年   613篇
  2022年   843篇
  2021年   931篇
  2020年   573篇
  2019年   183篇
  2018年   340篇
  2017年   475篇
  2016年   470篇
  2015年   964篇
  2014年   1341篇
  2013年   1239篇
  2012年   1360篇
  2011年   1628篇
  2010年   1611篇
  2009年   1866篇
  2008年   2087篇
  2007年   2025篇
  2006年   1545篇
  2005年   1559篇
  2004年   1101篇
  2003年   968篇
  2002年   1022篇
  2001年   1104篇
  2000年   1316篇
  1999年   2390篇
  1998年   2244篇
  1997年   2281篇
  1996年   2111篇
  1995年   1890篇
  1994年   1642篇
  1993年   1404篇
  1992年   1249篇
  1991年   1122篇
  1990年   966篇
  1989年   850篇
  1988年   704篇
  1987年   442篇
  1986年   225篇
  1985年   84篇
  1984年   15篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
The effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–xZn–0.2Ca alloys (x=0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) are investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstructure of the 0.6Zn alloy is composed of α-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain α-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, with increasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides an updated investigation of the alloy composition–microstructure–property relationships of different Zn-containing Mg–Zn–Ca alloys.  相似文献   
922.
To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.  相似文献   
923.
The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}310 and P {011}122 orientations.  相似文献   
924.
A 1040°C-hot-deformed Ti_2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deformed alloys were measured. The results indicated that the microstructure of the deformed Ti_2AlNb-based alloy specimens comprise coarse O lath, fine O lath, equiaxed O/α_2, and acicular O phase. More O phase was generated in the deformed alloy after heat treatment because the acicular O phase was more likely to nucleate and grow along the deformation-induced crystal defects such as dislocations and subgrain boundaries. After deformation and subsequent heat treatment, the acicular O phase of the resultant alloy became finer compared to that of the undeformed alloy, and the acicular O phase became coarser and longer with the elevated aging temperature, while the width of the O lath exhibited unobvious variations. The hot deformation facilitated the dissolution of the O lath but accelerated the precipitation of the acicular O phase. When the 950°C-solution-treated deformed Ti_2AlNb-based alloy was then aged at 750°C for different periods, the phase content was nearly invariable, O and B2 phases eventually reached equilibrium, and the microstructure became stable and homogeneous.  相似文献   
925.
Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2–CO mixtures with different H2/CO molar ratios(1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures(1023, 1123, 1223, 1323, and 1423 K) in a thermogravimetric analysis apparatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstructure of reduced pellets was observed by scanning electron microscopy–energy-dispersive spectrometry(SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hinder effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could maintain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overall equilibrium constant to the promotion effect depends on the gas composition.  相似文献   
926.
In this work, polyvinylpyrrolidone(PVP) coated Mg_(95)Ni_5 nano-composites were prepared by hydriding combustion synthesis(HCS) plus wet mechanical milling(WM) with tetrahydrofuran(THF) and donated as WM-x wt% PVP(x = 1, 3, 5 and 7) respectively. The phase compositions, microstructures and dehydriding property, as well as the co-effect of PVP and THF were investigated in detail. XRD results showed that the average crystal size of MgH_2 in the milled Mg_(95)Ni_5 decreased from 23 nm without PVP to 18 nm with 1 wt% PVP. The peak temperature of dehydrogenation of MgH_2 in the milled Mg_(95)Ni_5 decreased from 293.0 ℃ without THF to 250.4 ℃ with THF. The apparent activation energy for decomposition of MgH_2 in WM-7 wt% PVP was estimated to be 66.94 kJ/mol, which is 37.70 kJ/mol lower than that of milled Mg_(95)Ni_5 without THF and PVP. PVP and THF can facilitate the refinement of particle size during mechanical milling process. Attributed to small particle sizes and synergistic effect of PVP and THF, the composites exhibit markedly improved dehydriding properties.  相似文献   
927.
Boron is added into single crystal superalloys as a micro-alloying element to strengthen low angle grain boundaries.However,systematic investigations on the effect of boron on microstructures of single crystal superalloys are limitedly reported.The effect of boron on as-cast and heat-treated microstructures was investigated in two experimental Ni-based single crystal superalloys containing 3 wt% Re.The current results indicated that the volume fraction of(γ+γ′)eutectic and M_3B_2 borides was evidently increased,while the number of micropores was evidently decreased with the addition of 0.02 wt% boron.The(γ+γ′)eutectic could not be dissolved completely due to the lower incipient melting temperature caused by the formation of M_3B_2 borides.Meanwhile,the M_3B_2 borides were found to be enriched with indispensable strengthening elements Cr,Mo,W and Re,and this may lower the strengthening effect and cause stress concentration during high temperature creep.  相似文献   
928.
The relationship between crystal orientations and meso-mechanical properties of β phase Ti-7333 titanium was investigated through the combination of nanoindentation experiments and simulation. The crystal plasticity finite element(CPFE) model for nanoindentation of single body-centered cubic crystal was established based on the experimental data. And the crystal plasticity constitutive law was implemented to simulate the nanoindentation process, obtaining satisfied results with an acceptable error. From the simulated pileup morphology patterns with different crystal orientations, it was found that the β phase experienced a symmetrical and orientation-related deformation process. Meanwhile, the strain-rate sensitivity(SRS) of β phase was investigated through nanoindentation tests based on continuous stiffness measurement(CSM) under different strain rates,varying between 0.2, 0.05 and 0.01 s~(-1). Two grains with different orientations exhibited similar SRS exponents,m, calculated from the experimental results.  相似文献   
929.
The low quantum efficiency arising from poor charges transfer and insufficient light absorption is one of the critical challenges toward achieving highly efficient water splitting in photoelectrochemical cells. Three dimensions(3D) structures and heterojunctions have received intensive research interests recent years due to their excellent ability to separate photo-generated charges as well as the enhanced light harvesting property. Herein,3 D Cu O/WO_3 structure was fabricated through a facile solvothermal method followed by chemical bath deposition. The loading of Cu O clusters on WO_3 nanoflake arrays results in a much improved photocurrent density compared with that of pristine WO_3 nanoflake arrays, which reaches 1.8 m A/cm2 at 1.23 V vs. the reversible hydrogen electrode. The electrochemical impedance spectroscopy measurement demonstrates that the improved performance of Cu O/WO_3 electrode is attributed to the accelerated charge transfer kinetics as a result of the desirable band alignment in Cu O/WO_3 heterojunction. This work demonstrates a facile strategy to construct superior WO_3 electrode, which will ultimately allow for efficient storage of solar energy into hydrogen.  相似文献   
930.
The Qitianling calc-alkaline granite in Hunan Province (South China) has attracted much attention since the discovery of the Furong super-large tin deposit. The present study provides new mineralogical data to address their implications for exploration of tin deposits. In the Taoxiwo granite in the southeastern part of the Qitianling granite body, Sn-rich titanite was identified as an important type of Sn-bearing mineral. The titanite commonly occurs with biotite as euhedral crystals, exhibiting typical envelope-like shape and sector-zoning texture. These indicate that the titanite most likely crystallized in the magmatic stage. Electron-microprobe analyses show that the titanite is enriched in tin up to 1.12 wt% SnO2, with an average of 0.43 wt%. With the crystallization of the granite, primary minerals undertook hydrothermal alteration by magma-derived fluids. Subsequently, in the hydrothermal stage, the primary Sn-bearing titanite was altered (at least partially), but still preserved its typical envelope-shaped outline. Micro-scale cassiterite is a representative product of such alteration; other secondary minerals include fluorite, ilmenite, Sn-bearing rutile and quartz. Therefore, the titanite, commonly present in the calcalkaline granites, can be treated as an important Sn-carrying mineral in the Qitianling granite, reflecting the primary magmatic environment with tin enrichment. The hydrothermal alteration of the primary titanite and subsequent crystallization of cassiterite recorded a process of leaching and accumulation of tin in magmatic-hydrothermal evolution of the Sn-bearing granite. Thus, this titanite has important implications for tin exploration. Supported by National Natural Science Foundation of China (Grant Nos. 40730423 and 40221301) and Project of China Geological Survey (Grant No. 1212010632100)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号