首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14593篇
  免费   232篇
  国内免费   516篇
系统科学   330篇
丛书文集   547篇
教育与普及   512篇
理论与方法论   234篇
现状及发展   339篇
研究方法   628篇
综合类   12742篇
自然研究   9篇
  2024年   37篇
  2023年   145篇
  2022年   149篇
  2021年   223篇
  2020年   176篇
  2019年   159篇
  2018年   193篇
  2017年   89篇
  2016年   122篇
  2015年   206篇
  2014年   497篇
  2013年   395篇
  2012年   709篇
  2011年   798篇
  2010年   578篇
  2009年   561篇
  2008年   809篇
  2007年   881篇
  2006年   781篇
  2005年   768篇
  2004年   698篇
  2003年   676篇
  2002年   546篇
  2001年   477篇
  2000年   588篇
  1999年   422篇
  1998年   345篇
  1997年   353篇
  1996年   386篇
  1995年   293篇
  1994年   259篇
  1993年   264篇
  1992年   234篇
  1991年   222篇
  1990年   167篇
  1989年   175篇
  1988年   93篇
  1987年   78篇
  1986年   78篇
  1985年   66篇
  1984年   71篇
  1983年   55篇
  1982年   61篇
  1981年   46篇
  1980年   39篇
  1959年   45篇
  1958年   59篇
  1957年   36篇
  1956年   37篇
  1955年   28篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
151.
Kawasaki disease is a pediatric systemic vasculitis of unknown etiology for which a genetic influence is suspected. We identified a functional SNP (itpkc_3) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene on chromosome 19q13.2 that is significantly associated with Kawasaki disease susceptibility and also with an increased risk of coronary artery lesions in both Japanese and US children. Transfection experiments showed that the C allele of itpkc_3 reduces splicing efficiency of the ITPKC mRNA. ITPKC acts as a negative regulator of T-cell activation through the Ca2+/NFAT signaling pathway, and the C allele may contribute to immune hyper-reactivity in Kawasaki disease. This finding provides new insights into the mechanisms of immune activation in Kawasaki disease and emphasizes the importance of activated T cells in the pathogenesis of this vasculitis.  相似文献   
152.
An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency. This analysis, followed by filtering with a prioritization of mitochondrial proteins, led us to identify compound heterozygous mutations in ACAD9, which encodes a poorly understood member of the mitochondrial acyl-CoA dehydrogenase protein family. We demonstrated the pathogenic role of the ACAD9 variants by the correction of the complex I defect on expression of the wildtype ACAD9 protein in fibroblasts derived from affected individuals. ACAD9 screening of 120 additional complex I-defective index cases led us to identify two additional unrelated cases and a total of five pathogenic ACAD9 alleles.  相似文献   
153.
154.
Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs.  相似文献   
155.
The developmental dynamics of the maize leaf transcriptome   总被引:5,自引:0,他引:5  
  相似文献   
156.
Genome-wide association studies of 14 agronomic traits in rice landraces   总被引:20,自引:0,他引:20  
Huang X  Wei X  Sang T  Zhao Q  Feng Q  Zhao Y  Li C  Zhu C  Lu T  Zhang Z  Li M  Fan D  Guo Y  Wang A  Wang L  Deng L  Li W  Lu Y  Weng Q  Liu K  Huang T  Zhou T  Jing Y  Li W  Lin Z  Buckler ES  Qian Q  Zhang QF  Li J  Han B 《Nature genetics》2010,42(11):961-967
Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is important to world food security. Here we have identified ~ 3.6 million SNPs by sequencing 517 rice landraces and constructed a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS explained ~ 36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical biparental cross-mapping for dissecting complex traits in rice.  相似文献   
157.
离散型两相流动的大涡模拟   总被引:1,自引:0,他引:1  
大涡模拟(Large-eddy simulation,LES)的研究正在取得迅速进展.和雷诺平均模拟(Reynolds-averaged Navier-Stokes modeling,RANS modeling)相比,LES可以给出流动和火焰的瞬态结构,并且在不少情况下可以给出比雷诺平均模拟更准确的统计平均结果.本文作者及其同事从2002年开始,用大涡模拟研究了气泡-液体流动的瞬态结构.后来从2005年至今陆续研究了气体-颗粒两相流动的大涡模拟、气体绕过单个颗粒流动的大涡模拟、以及有蒸发和燃烧的油滴周围的流动的大涡模拟.本文对作者及其同事近期进行的上述离散型两相流动的大涡模拟研究给出了简要的综述,包括控制方程、亚网格模型、数值方法、主要的模拟结果及其实验验证.  相似文献   
158.
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic ‘bodyweight/appetite/satiety set point,’ resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer’s disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer’s disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer’s disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.  相似文献   
159.
Chronic granulomatous disease (CGD) is an uncommon congenital immunodeficiency seen approximately in 1 of 250,000 individuals. It is caused by a profound defect in a burst of oxygen consumption that normally accompanies phagocytosis in all myeloid cells (neutrophils, eosinophils, monocytes, and macrophages). This “respiratory burst” involves the catalytic conversion of molecular oxygen to the oxygen free-radical superoxide, which in turn gives rise to hydrogen peroxide, hypochlorous acid, and hydroxyl radicals. These oxygen derivatives play a critical role in the killing of pathogenic bacteria and fungi. As a result of the failure to activate the respiratory burst in their phagocytes, the majority of CGD patients suffer from severe recurrent infections and rather unexplained prolonged inflammatory reactions that may result in granulomatous lesions. Both may cause severe organ dysfunction depending on the tissues involved. Preventive measures as well as rapid (invasive) diagnostic procedures are required to successfully treat CGD. Hematopoietic stem cell transplantation may be a serious option in some of the patients.  相似文献   
160.
A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号