首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5410篇
  免费   40篇
  国内免费   42篇
系统科学   642篇
丛书文集   393篇
教育与普及   178篇
理论与方法论   13篇
现状及发展   417篇
研究方法   679篇
综合类   3168篇
自然研究   2篇
  2022年   7篇
  2021年   8篇
  2016年   10篇
  2015年   11篇
  2014年   23篇
  2013年   12篇
  2012年   296篇
  2011年   365篇
  2010年   100篇
  2009年   33篇
  2008年   313篇
  2007年   329篇
  2006年   472篇
  2005年   528篇
  2004年   379篇
  2003年   340篇
  2002年   300篇
  2001年   253篇
  2000年   405篇
  1999年   114篇
  1998年   52篇
  1997年   23篇
  1996年   14篇
  1995年   29篇
  1994年   37篇
  1993年   53篇
  1992年   40篇
  1991年   32篇
  1990年   23篇
  1989年   30篇
  1988年   16篇
  1987年   19篇
  1986年   28篇
  1985年   20篇
  1984年   13篇
  1983年   24篇
  1982年   20篇
  1981年   15篇
  1980年   12篇
  1979年   11篇
  1971年   9篇
  1970年   19篇
  1966年   7篇
  1959年   91篇
  1958年   124篇
  1957年   101篇
  1956年   99篇
  1955年   75篇
  1954年   78篇
  1948年   16篇
排序方式: 共有5492条查询结果,搜索用时 15 毫秒
201.
Crosses between the two North American rodent species Peromyscus polionotus (PO) and Peromyscus maniculatus (BW) yield parent-of-origin effects on both embryonic and placental growth. The two species are approximately the same size, but a female BW crossed with a male PO produces offspring that are smaller than either parent. In the reciprocal cross, the offspring are oversized and typically die before birth. Rare survivors are exclusively female, consistent with Haldane's rule, which states that in instances of hybrid sterility or inviability, the heterogametic sex tends to be more severely affected. To understand these sex- and parent-of-origin-specific patterns of overgrowth, we analysed reciprocal backcrosses. Our studies reveal that hybrid inviability is partially due to a maternally expressed X-linked PO locus and an imprinted paternally expressed autosomal BW locus. In addition, the hybrids display skewing of X-chromosome inactivation in favour of the expression of the BW X chromosome. The most severe overgrowth is accompanied by widespread relaxation of imprinting of mostly paternally expressed genes. Both genetic and epigenetic mechanisms underlie hybrid inviability in Peromyscus and hence have a role in the establishment and maintenance of reproductive isolation barriers in mammals.  相似文献   
202.
Systematic variation in gene expression patterns in human cancer cell lines   总被引:69,自引:0,他引:69  
We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.  相似文献   
203.
Analysis of expressed sequence tags indicates 35,000 human genes   总被引:18,自引:0,他引:18  
Ewing B  Green P 《Nature genetics》2000,25(2):232-234
The number of protein-coding genes in an organism provides a useful first measure of its molecular complexity. Single-celled prokaryotes and eukaryotes typically have a few thousand genes; for example, Escherichia coli has 4,300 and Saccharomyces cerevisiae has 6,000. Evolution of multicellularity appears to have been accompanied by a several-fold increase in gene number, the invertebrates Caenorhabditis elegans and Drosophila melanogaster having 19,000 and 13,600 genes, respectively. Here we estimate the number of human genes by comparing a set of human expressed sequence tag (EST) contigs with human chromosome 22 and with a non-redundant set of mRNA sequences. The two comparisons give mutually consistent estimates of approximately 35,000 genes, substantially lower than most previous estimates. Evolution of the increased physiological complexity of vertebrates may therefore have depended more on the combinatorial diversification of regulatory networks or alternative splicing than on a substantial increase in gene number.  相似文献   
204.
Receptor tyrosine kinases often have critical roles in particular cell lineages by initiating signalling cascades in those lineages. Examples include the neural-specific TRK receptors, the VEGF and angiopoietin endothelial-specific receptors, and the muscle-specific MUSK receptor. Many lineage-restricted receptor tyrosine kinases were initially identified as 'orphans' homologous to known receptors, and only subsequently used to identify their unknown growth factors. Some receptor-tyrosine-kinase-like orphans still lack identified ligands as well as biological roles. Here we characterize one such orphan, encoded by Ror2 (ref. 12). We report that disruption of mouse Ror2 leads to profound skeletal abnormalities, with essentially all endochondrally derived bones foreshortened or misshapen, albeit to differing degrees. Further, we find that Ror2 is selectively expressed in the chondrocytes of all developing cartilage anlagen, where it essential during initial growth and patterning, as well as subsequently in the proliferating chondrocytes of mature growth plates, where it is required for normal expansion. Thus, Ror2 encodes a receptor-like tyrosine kinase that is selectively expressed in, and particularly important for, the chondrocyte lineage.  相似文献   
205.
Molecular mechanisms involved in cisplatin cytotoxicity   总被引:15,自引:1,他引:14  
cis-diamminedichloroplatinum(II) or cisplatin is a DNA-damaging agent that is widely used in cancer chemotherapy. Cisplatin cross-links to DNA, forming intra- and interstrand adducts, which bend and unwind the duplex and attract high-mobility-group domain and other proteins. Presumably due to a shielding effect caused by these proteins, the cisplatin-modified DNA is poorly repaired. The resulting DNA damage triggers cell-cycle arrest and apoptosis. Although it is still debatable whether the clinical success of cisplatin relies primarily on its ability to trigger apoptosis, at least two distinct pathways have been proposed to contribute to cisplatin-induced apoptosis in vitro. One involves the tumour-suppressor protein p53, the other is mediated by the p53-related protein p73. Coupling cisplatin damage to apoptosis requires mismatch repair activity, and recent observations further suggest involvement of the homologous recombinatorial repair system. At present it is generally accepted that abortive attempts to repair the DNA lesions play a key role in the cytotoxicity of the drug, and loss of the mismatch repair activity is known to cause cisplatin resistance, a major problem in antineoplastic therapy. Clearly, a better understanding of the signalling networks involved in cisplatin toxicity should provide a rational basis for the development of new therapeutic strategies.  相似文献   
206.
Control of neurulation by the nucleosome assembly protein-1-like 2   总被引:1,自引:0,他引:1  
Neurulation is a complex process of histogenesis involving the precise temporal and spatial organization of gene expression. Genes influencing neurulation include proneural genes determining primary cell fate, neurogenic genes involved in lateral inhibition pathways and genes controlling the frequency of mitotic events. This is reflected in the aetiology and genetics of human and mouse neural tube defects, which are of both multifactorial and multigenic origin. The X-linked gene Nap1l2, specifically expressed in neurons, encodes a protein that is highly similar to the nucleosome assembly (NAP) and SET proteins. We inactivated Nap1l2 in mice by gene targeting, leading to embryonic lethality from mid-gestation onwards. Surviving mutant chimaeric embryos showed extensive surface ectoderm defects as well as the presence of open neural tubes and exposed brains similar to those observed in human spina bifida and anencephaly. These defects correlated with an overproduction of neuronal precursor cells. Protein expression studies showed that the Nap1l2 protein binds to condensing chromatin during S phase and in apoptotic cells, but remained cytoplasmic during G1 phase. Nap1l2 therefore likely represents a class of tissue-specific factors interacting with chromatin to regulate neuronal cell proliferation.  相似文献   
207.
208.
Intraprotein radical transfer during photoactivation of DNA photolyase   总被引:9,自引:0,他引:9  
Aubert C  Vos MH  Mathis P  Eker AP  Brettel K 《Nature》2000,405(6786):586-590
Amino-acid radicals play key roles in many enzymatic reactions. Catalysis often involves transfer of a radical character within the protein, as in class I ribonucleotide reductase where radical transfer occurs over 35 A, from a tyrosyl radical to a cysteine. It is currently debated whether this kind of long-range transfer occurs by electron transfer, followed by proton release to create a neutral radical, or by H-atom transfer, that is, simultaneous transfer of electrons and protons. The latter mechanism avoids the energetic cost of charge formation in the low dielectric protein, but it is less robust to structural changes than is electron transfer. Available experimental data do not clearly discriminate between these proposals. We have studied the mechanism of photoactivation (light-induced reduction of the flavin adenine dinucleotide cofactor) of Escherichia coli DNA photolyase using time-resolved absorption spectroscopy. Here we show that the excited flavin adenine dinucleotide radical abstracts an electron from a nearby tryptophan in 30 ps. After subsequent electron transfer along a chain of three tryptophans, the most remote tryptophan (as a cation radical) releases a proton to the solvent in about 300 ns, showing that electron transfer occurs before proton dissociation. A similar process may take place in photolyase-like blue-light receptors.  相似文献   
209.
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovici? discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号