首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5363篇
  免费   37篇
  国内免费   42篇
系统科学   640篇
丛书文集   388篇
教育与普及   247篇
理论与方法论   10篇
现状及发展   417篇
研究方法   679篇
综合类   3059篇
自然研究   2篇
  2021年   7篇
  2016年   7篇
  2015年   8篇
  2014年   16篇
  2013年   10篇
  2012年   290篇
  2011年   357篇
  2010年   94篇
  2009年   32篇
  2008年   304篇
  2007年   328篇
  2006年   474篇
  2005年   522篇
  2004年   386篇
  2003年   340篇
  2002年   299篇
  2001年   256篇
  2000年   400篇
  1999年   114篇
  1998年   52篇
  1997年   27篇
  1996年   21篇
  1995年   30篇
  1994年   38篇
  1993年   56篇
  1992年   42篇
  1991年   33篇
  1990年   24篇
  1989年   29篇
  1988年   18篇
  1987年   18篇
  1986年   29篇
  1985年   19篇
  1984年   13篇
  1983年   23篇
  1982年   20篇
  1981年   15篇
  1980年   12篇
  1979年   10篇
  1971年   9篇
  1970年   19篇
  1966年   7篇
  1959年   90篇
  1958年   124篇
  1957年   101篇
  1956年   99篇
  1955年   75篇
  1954年   78篇
  1948年   16篇
  1946年   6篇
排序方式: 共有5442条查询结果,搜索用时 15 毫秒
991.
A material is said to exhibit dichroism if its photon absorption spectrum depends on the polarization of the incident radiation. In the case of X-ray magnetic circular dichroism (XMCD), the absorption cross-section of a ferromagnet or a paramagnet in a magnetic field changes when the helicity of a circularly polarized photon is reversed relative to the magnetization direction. Although similarities between X-ray absorption and electron energy-loss spectroscopy in a transmission electron microscope (TEM) have long been recognized, it has been assumed that extending such equivalence to circular dichroism would require the electron beam in the TEM to be spin-polarized. Recently, it was argued on theoretical grounds that this assumption is probably wrong. Here we report the direct experimental detection of magnetic circular dichroism in a TEM. We compare our measurements of electron energy-loss magnetic chiral dichroism (EMCD) with XMCD spectra obtained from the same specimen that, together with theoretical calculations, show that chiral atomic transitions in a specimen are accessible with inelastic electron scattering under particular scattering conditions. This finding could have important consequences for the study of magnetism on the nanometre and subnanometre scales, as EMCD offers the potential for such spatial resolution down to the nanometre scale while providing depth information--in contrast to X-ray methods, which are mainly surface-sensitive.  相似文献   
992.
Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.  相似文献   
993.
994.
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.  相似文献   
995.
Gadsby DC  Vergani P  Csanády L 《Nature》2006,440(7083):477-483
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.  相似文献   
996.
An unsuspected attachment mechanism may help these huge spiders to avoid catastrophic falls. Spiders spin silk from specialized structures known as abdominal spinnerets--a defining feature of the creatures--and this is deployed to capture prey, protect themselves, reproduce and disperse. Here we show that zebra tarantulas (Aphonopelma seemanni) from Costa Rica also secrete silk from their feet to provide adhesion during locomotion, enabling these spiders to cling to smooth vertical surfaces. Our discovery that silk is produced by the feet provides a new perspective on the origin and diversification of spider silk.  相似文献   
997.
Gamma-ray bursts (GRBs) and their afterglows are the most brilliant transient events in the Universe. Both the bursts themselves and their afterglows have been predicted to be visible out to redshifts of z approximately 20, and therefore to be powerful probes of the early Universe. The burst GRB 000131, at z = 4.50, was hitherto the most distant such event identified. Here we report the discovery of the bright near-infrared afterglow of GRB 050904 (ref. 4). From our measurements of the near-infrared afterglow, and our failure to detect the optical afterglow, we determine the photometric redshift of the burst to be z = 6.39 - 0.12 + 0.11 (refs 5-7). Subsequently, it was measured spectroscopically to be z = 6.29 +/- 0.01, in agreement with our photometric estimate. These results demonstrate that GRBs can be used to trace the star formation, metallicity, and reionization histories of the early Universe.  相似文献   
998.
Misfolded proteins are associated with several pathological conditions including neurodegeneration. Although some of these abnormally folded proteins result from mutations in genes encoding disease-associated proteins (for example, repeat-expansion diseases), more general mechanisms that lead to misfolded proteins in neurons remain largely unknown. Here we demonstrate that low levels of mischarged transfer RNAs (tRNAs) can lead to an intracellular accumulation of misfolded proteins in neurons. These accumulations are accompanied by upregulation of cytoplasmic protein chaperones and by induction of the unfolded protein response. We report that the mouse sticky mutation, which causes cerebellar Purkinje cell loss and ataxia, is a missense mutation in the editing domain of the alanyl-tRNA synthetase gene that compromises the proofreading activity of this enzyme during aminoacylation of tRNAs. These findings demonstrate that disruption of translational fidelity in terminally differentiated neurons leads to the accumulation of misfolded proteins and cell death, and provide a novel mechanism underlying neurodegeneration.  相似文献   
999.
The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions provide new candidates in the search for uniquely human biology.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号