首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   0篇
系统科学   4篇
教育与普及   1篇
理论与方法论   4篇
现状及发展   35篇
研究方法   37篇
综合类   165篇
自然研究   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   1篇
  2013年   1篇
  2012年   24篇
  2011年   29篇
  2010年   11篇
  2009年   4篇
  2008年   22篇
  2007年   20篇
  2006年   30篇
  2005年   22篇
  2004年   21篇
  2003年   20篇
  2002年   19篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
71.
Tuberculosis poses a global health emergency, which has been compounded by the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains. We used whole-genome sequencing to compare the accumulation of mutations in Mtb isolated from cynomolgus macaques with active, latent or reactivated disease. We sequenced 33 Mtb isolates from nine macaques with an average genome coverage of 93% and an average read depth of 117×. Based on the distribution of SNPs observed, we calculated the mutation rates for these disease states. We found a similar mutation rate during latency as during active disease or in a logarithmically growing culture over the same period of time. The pattern of polymorphisms suggests that the mutational burden in vivo is because of oxidative DNA damage. We show that Mtb continues to acquire mutations during disease latency, which may explain why isoniazid monotherapy for latent tuberculosis is a risk factor for the emergence of isoniazid resistance.  相似文献   
72.
Genome-wide association studies (GWAS) have identified dozens of risk loci for many complex disorders, including Crohn's disease. However, common disease-associated SNPs explain at most ~20% of the genetic variance for Crohn's disease. Several factors may account for this unexplained heritability, including rare risk variants not adequately tagged thus far in GWAS. That rare susceptibility variants indeed contribute to variation in multifactorial phenotypes has been demonstrated for colorectal cancer, plasma high-density lipoprotein cholesterol levels, blood pressure, type 1 diabetes, hypertriglyceridemia and, in the case of Crohn's disease, for NOD2 (refs. 14,15). Here we describe the use of high-throughput resequencing of DNA pools to search for rare coding variants influencing susceptibility to Crohn's disease in 63 GWAS-identified positional candidate genes. We identify low frequency coding variants conferring protection against inflammatory bowel disease in IL23R, but we conclude that rare coding variants in positional candidates do not make a large contribution to inherited predisposition to Crohn's disease.  相似文献   
73.
The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.  相似文献   
74.
Although numerous fundamental aspects of development have been uncovered through the study of individual genes and proteins, system-level models are still missing for most developmental processes. The first two cell divisions of Caenorhabditis elegans embryogenesis constitute an ideal test bed for a system-level approach. Early embryogenesis, including processes such as cell division and establishment of cellular polarity, is readily amenable to large-scale functional analysis. A first step toward a system-level understanding is to provide 'first-draft' models both of the molecular assemblies involved and of the functional connections between them. Here we show that such models can be derived from an integrated gene/protein network generated from three different types of functional relationship: protein interaction, expression profiling similarity and phenotypic profiling similarity, as estimated from detailed early embryonic RNA interference phenotypes systematically recorded for hundreds of early embryogenesis genes. The topology of the integrated network suggests that C. elegans early embryogenesis is achieved through coordination of a limited set of molecular machines. We assessed the overall predictive value of such molecular machine models by dynamic localization of ten previously uncharacterized proteins within the living embryo.  相似文献   
75.
Chemical synapses are complex structures that mediate rapid intercellular signalling in the nervous system. Proteomic studies suggest that several hundred proteins will be found at synaptic specializations. Here we describe a systematic screen to identify genes required for the function or development of Caenorhabditis elegans neuromuscular junctions. A total of 185 genes were identified in an RNA interference screen for decreased acetylcholine secretion; 132 of these genes had not previously been implicated in synaptic transmission. Functional profiles for these genes were determined by comparing secretion defects observed after RNA interference under a variety of conditions. Hierarchical clustering identified groups of functionally related genes, including those involved in the synaptic vesicle cycle, neuropeptide signalling and responsiveness to phorbol esters. Twenty-four genes encoded proteins that were localized to presynaptic specializations. Loss-of-function mutations in 12 genes caused defects in presynaptic structure.  相似文献   
76.
Scheffler M  Dressel M  Jourdan M  Adrian H 《Nature》2005,438(7071):1135-1137
The electrical conduction of metals is governed by how freely mobile electrons can move throughout the material. This movement is hampered by scattering with other electrons, as well as with impurities or thermal excitations (phonons). Experimentally, the scattering processes of single electrons are not observed, but rather the overall response of all mobile charge carriers within a sample. The ensemble dynamics can be described by the relaxation rates, which express how fast the system approaches equilibrium after an external perturbation. Here we measure the frequency-dependent microwave conductivity of the heavy-fermion metal UPd2Al3 (ref. 4), finding that it is accurately described by the prediction for a single relaxation rate (the so-called Drude response). This is notable, as UPd2Al3 has strong interactions among the electrons that might be expected to lead to more complex behaviour. Furthermore, the relaxation rate of just a few gigahertz is extremely low--this is several orders of magnitude below those of conventional metals (which are typically around 10 THz), and at least one order of magnitude lower than previous estimates for comparable metals. These observations are directly related to the high effective mass of the charge carriers in this material and reveal the dynamics of interacting electrons.  相似文献   
77.
Palleroni A  Miller CT  Hauser M  Marler P 《Nature》2005,434(7036):973-974
Several plumage types are found in feral pigeons (Columba livia), but one type imparts a clear survival advantage during attacks by the swiftest of all predators--the peregrine falcon (Falco peregrinus). Here we use quantitative field observations and experiments to demonstrate both the selective nature of the falcon's choice of prey and the effect of plumage coloration on the survival of feral pigeons. This plumage colour is an independently heritable trait that is likely to be an antipredator adaptation against high-speed attacks in open air space.  相似文献   
78.
Autosomal dominant centronuclear myopathy is a rare congenital myopathy characterized by delayed motor milestones and muscular weakness. In 11 families affected by centronuclear myopathy, we identified recurrent and de novo missense mutations in the gene dynamin 2 (DNM2, 19p13.2), which encodes a protein involved in endocytosis and membrane trafficking, actin assembly and centrosome cohesion. The transfected mutants showed reduced labeling in the centrosome, suggesting that DNM2 mutations might cause centronuclear myopathy by interfering with centrosome function.  相似文献   
79.
A substantial percentage of human pregnancies are lost as spontaneous abortions after implantation. This is often caused by an inadequately developed placenta. Proper development of the placental vascular system is essential to nutrient and gas exchange between mother and developing embryo. Here we show that alpha(2)-adrenoceptors, which are activated by adrenaline and noradrenaline, are important regulators of placental structure and function. Mice with deletions in the genes encoding alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors died between embryonic days 9.5 and 11.5 from a severe defect in yolk-sac and placenta development. In wildtype placentae, alpha(2)-adrenoceptors are abundantly expressed in giant cells, which secrete angiogenic factors to initiate development of the placental vascular labyrinth. In placentae deficient in alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors, the density of fetal blood vessels in the labyrinth was markedly lower than normal, leading to death of the embryos as a result of reduced oxygen and nutrient supply. Basal phosphorylation of the extracellular signal regulated kinases ERK1 and ERK2 was also lower than normal, suggesting that activation of the mitogen-activated protein kinase (MAP kinase) pathway by alpha(2)-adrenoceptors is required for placenta and yolk-sac vascular development. Thus, alpha(2)-adrenoceptors are essential at the placental interface between mother and embryo to establish the circulatory system of the placenta and thus maintain pregnancy.  相似文献   
80.
The I kappa B kinase (IKK), consisting of the IKK1 and IKK2 catalytic subunits and the NEMO (also known as IKK gamma) regulatory subunit, phosphorylates I kappa B proteins, targeting them for degradation and thus inducing activation of NF-kappa B (reviewed in refs 1, 2). IKK2 and NEMO are necessary for NF-kappa B activation through pro-inflammatory signals. IKK1 seems to be dispensable for this function but controls epidermal differentiation independently of NF-kappa B. Previous studies suggested that NF-kappa B has a function in the growth regulation of epidermal keratinocytes. Mice lacking RelB or I kappa B alpha, as well as both mice and humans with heterozygous NEMO mutations, develop skin lesions. However, the function of NF-kappa B in the epidermis remains unclear. Here we used Cre/loxP-mediated gene targeting to investigate the function of IKK2 specifically in epidermal keratinocytes. IKK2 deficiency inhibits NF-kappa B activation, but does not lead to cell-autonomous hyperproliferation or impaired differentiation of keratinocytes. Mice with epidermis-specific deletion of IKK2 develop a severe inflammatory skin disease, which is caused by a tumour necrosis factor-mediated, alpha beta T-cell-independent inflammatory response that develops in the skin shortly after birth. Our results suggest that the critical function of IKK2-mediated NF-kappa B activity in epidermal keratinocytes is to regulate mechanisms that maintain the immune homeostasis of the skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号