全文获取类型
收费全文 | 319篇 |
免费 | 4篇 |
国内免费 | 6篇 |
专业分类
系统科学 | 11篇 |
理论与方法论 | 1篇 |
现状及发展 | 26篇 |
研究方法 | 54篇 |
综合类 | 215篇 |
自然研究 | 22篇 |
出版年
2024年 | 2篇 |
2022年 | 2篇 |
2021年 | 5篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2017年 | 3篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 4篇 |
2013年 | 7篇 |
2012年 | 28篇 |
2011年 | 56篇 |
2010年 | 11篇 |
2009年 | 3篇 |
2008年 | 37篇 |
2007年 | 20篇 |
2006年 | 28篇 |
2005年 | 30篇 |
2004年 | 22篇 |
2003年 | 21篇 |
2002年 | 29篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1995年 | 1篇 |
1992年 | 2篇 |
1990年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有329条查询结果,搜索用时 15 毫秒
21.
Importance of rain evaporation and continental convection in the tropical water cycle 总被引:5,自引:0,他引:5
Worden J Noone D Bowman K;Tropospheric Emission Spectrometer Science Team Data contributors 《Nature》2007,445(7127):528-532
Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur. 相似文献
23.
24.
Chatterton JE Awobuluyi M Premkumar LS Takahashi H Talantova M Shin Y Cui J Tu S Sevarino KA Nakanishi N Tong G Lipton SA Zhang D 《Nature》2002,415(6873):793-798
The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor. 相似文献
25.
26.
Untangling the influence of human activities on food-web stability and persistence is complex given the large numbers of species and overwhelming number of interactions within ecosystems. Although biodiversity has been associated with stability, the actual structures and processes that confer stability to diverse food webs remain largely unknown. Here we show that real food webs are structured such that top predators act as couplers of distinct energy channels that differ in both productivity and turnover rate. Our theoretical analysis shows that coupled fast and slow channels convey both local and non-local stability to food webs. Alarmingly, the same human actions that have been implicated in the loss of biodiversity also directly erode the very structures and processes that we show to confer stability on food webs. 相似文献
27.
The large ribosomal subunit catalyses the reaction between the alpha-amino group of the aminoacyl-tRNA bound to the A site and the ester carbon of the peptidyl-tRNA bound to the P site, while preventing the nucleophilic attack of water on the ester, which would lead to unprogrammed deacylation of the peptidyl-tRNA. Here we describe three new structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with peptidyl transferase substrate analogues that reveal an induced-fit mechanism in which substrates and active-site residues reposition to allow the peptidyl transferase reaction. Proper binding of an aminoacyl-tRNA analogue to the A site induces specific movements of 23S rRNA nucleotides 2618-2620 (Escherichia coli numbering 2583-2585) and 2541(2506), thereby reorienting the ester group of the peptidyl-tRNA and making it accessible for attack. In the absence of the appropriate A-site substrate, the peptidyl transferase centre positions the ester link of the peptidyl-tRNA in a conformation that precludes the catalysed nucleophilic attack by water. Protein release factors may also function, in part, by inducing an active-site rearrangement similar to that produced by the A-site aminoacyl-tRNA, allowing the carbonyl group and water to be positioned for hydrolysis. 相似文献
28.
Classical studies show that for many proteins, the information required for specifying the tertiary structure is contained in the amino acid sequence. Here, we attempt to define the sequence rules for specifying a protein fold by computationally creating artificial protein sequences using only statistical information encoded in a multiple sequence alignment and no tertiary structure information. Experimental testing of libraries of artificial WW domain sequences shows that a simple statistical energy function capturing coevolution between amino acid residues is necessary and sufficient to specify sequences that fold into native structures. The artificial proteins show thermodynamic stabilities similar to natural WW domains, and structure determination of one artificial protein shows excellent agreement with the WW fold at atomic resolution. The relative simplicity of the information used for creating sequences suggests a marked reduction to the potential complexity of the protein-folding problem. 相似文献
29.
30.
Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements. 相似文献