首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17708篇
  免费   227篇
  国内免费   567篇
系统科学   1488篇
丛书文集   966篇
教育与普及   2008篇
理论与方法论   142篇
现状及发展   1170篇
研究方法   1491篇
综合类   11195篇
自然研究   42篇
  2018年   46篇
  2017年   66篇
  2016年   63篇
  2015年   76篇
  2014年   147篇
  2013年   92篇
  2012年   833篇
  2011年   1058篇
  2010年   317篇
  2009年   100篇
  2008年   932篇
  2007年   1059篇
  2006年   1245篇
  2005年   1363篇
  2004年   1132篇
  2003年   1166篇
  2002年   864篇
  2001年   755篇
  2000年   956篇
  1999年   420篇
  1998年   140篇
  1997年   89篇
  1996年   90篇
  1995年   74篇
  1994年   110篇
  1993年   161篇
  1992年   141篇
  1991年   152篇
  1990年   127篇
  1989年   150篇
  1988年   179篇
  1987年   193篇
  1986年   234篇
  1985年   224篇
  1984年   242篇
  1983年   217篇
  1982年   225篇
  1981年   186篇
  1980年   151篇
  1979年   96篇
  1971年   38篇
  1970年   73篇
  1959年   283篇
  1958年   484篇
  1957年   344篇
  1956年   296篇
  1955年   301篇
  1954年   321篇
  1948年   73篇
  1946年   37篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
201.
In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol%) reinforced aluminum (Al) metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM), mechanical (nanoindentation, compression, tensile) and thermal properties (co-efficient of thermal expansion- CTE) of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile) of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites.  相似文献   
202.
203.
204.
A facile and fast approach for the synthesis of a nanostructured nickel hydroxide(Ni(OH)_2) via sonochemical technique is reported in the present study. The X-ray diffraction results confirmed that the synthesized Ni(OH)_2 was oriented in β-phase of hexagonal brucite structure. The nanostructured Ni(OH)_2 electrode exhibited the maximum specific capacitance of 1256 F/g at a current density of 200 mA/g in 1 M KOH_((aq)). Ni(OH)_2 electrodes exhibited the pseudocapacitive behavior due to the presence of redox reaction. It also exhibited long-term cyclic stability of 85% after 2000 cycles, suggesting that the nanostructured Ni(OH)_2 electrode will play a promising role for high performance supercapacitor application.  相似文献   
205.
综述了域上或交换代数上的线性(-)代数的相应的簇(范畴)的 Groebner-Shirshov 基理论的新成果,如:结合代数(包括群(半群)代数),自由代数的张量积,李代数,Di-代数,pre-李代数,Rota-Baxter代数,metabelian李代数,L-代数,半环代数,范畴代数,等.以上结果包含了许多应用,尤其是给出了一些著名结论的新的证明.  相似文献   
206.
Induction hardening of dense Fe-Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2-3 s. A case depth of 2.5 mm was achieved while maintaining the bulk (interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.  相似文献   
207.
Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.  相似文献   
208.
209.
正Published online:14 March 2014óScience China Press and Springer-Verlag Berlin Heidelberg 2014Erratum to:Chin.Sci.Bull.(2014)59(5–6):528–532DOI 10.1007/s11434-013-0060-1In the original publication of this paper,the first name and the last name of the first author has been documented  相似文献   
210.
利用化学气象沉淀法(CVD)在金属衬底上生长的石墨烯制备电子器件需要先把石墨烯转移到绝缘基底上,转移过程对器件制备的成功率和性能的均匀性有重要影响.转移过程中导致的石墨烯破损和金属生长基底残余颗粒污染受到普遍重视,然而由金属基底腐蚀液导致的石墨烯表面污染还没有引起足够的重视.本文利用拉曼光谱和X射线光电子能谱(XPS)证明了转移过程中金属基底腐蚀液会在石墨烯表面引入污染,利用我们发展的"改良的RCA(radio corporation of America)清洗(modified RCA clean)"转移工艺能够有效地去除这种污染.这对提高后续制备的电子器件的性能有重要意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号