首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4130篇
  免费   25篇
  国内免费   29篇
系统科学   91篇
丛书文集   242篇
教育与普及   172篇
理论与方法论   11篇
现状及发展   406篇
研究方法   593篇
综合类   2667篇
自然研究   2篇
  2018年   5篇
  2016年   7篇
  2014年   13篇
  2013年   17篇
  2012年   274篇
  2011年   330篇
  2010年   71篇
  2009年   16篇
  2008年   273篇
  2007年   266篇
  2006年   306篇
  2005年   321篇
  2004年   301篇
  2003年   264篇
  2002年   231篇
  2001年   189篇
  2000年   242篇
  1999年   67篇
  1998年   16篇
  1997年   16篇
  1996年   12篇
  1995年   15篇
  1994年   11篇
  1993年   15篇
  1992年   14篇
  1991年   12篇
  1990年   19篇
  1989年   20篇
  1988年   16篇
  1987年   11篇
  1986年   26篇
  1985年   22篇
  1984年   21篇
  1983年   14篇
  1982年   21篇
  1981年   30篇
  1980年   11篇
  1979年   12篇
  1971年   16篇
  1970年   28篇
  1966年   15篇
  1959年   68篇
  1958年   124篇
  1957年   89篇
  1956年   66篇
  1955年   87篇
  1954年   83篇
  1948年   25篇
  1947年   4篇
  1940年   4篇
排序方式: 共有4184条查询结果,搜索用时 31 毫秒
241.
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.  相似文献   
242.
Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced beta-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced beta-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K A(y) and ob/ob (also known as Lep/Lep) mice-two genetic models of obesity-have markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.  相似文献   
243.
Kuper J  Llamas A  Hecht HJ  Mendel RR  Schwarz G 《Nature》2004,430(7001):803-806
The molybdenum cofactor is part of the active site of all molybdenum-dependent enzymes, except nitrogenase. The molybdenum cofactor consists of molybdopterin, a phosphorylated pyranopterin, with an ene-dithiolate coordinating molybdenum. The same pyranopterin-based cofactor is involved in metal coordination of the homologous tungsten-containing enzymes found in archea. The molybdenum cofactor is synthesized by a highly conserved biosynthetic pathway. In plants, the multidomain protein Cnx1 catalyses the insertion of molybdenum into molybdopterin. The Cnx1 G domain (Cnx1G), whose crystal structure has been determined in its apo form, binds molybdopterin with high affinity and participates in the catalysis of molybdenum insertion. Here we present two high-resolution crystal structures of Cnx1G in complex with molybdopterin and with adenylated molybdopterin (molybdopterin-AMP), a mechanistically important intermediate. Molybdopterin-AMP is the reaction product of Cnx1G and is subsequently processed in a magnesium-dependent reaction by the amino-terminal E domain of Cnx1 to yield active molybdenum cofactor. The unexpected identification of copper bound to the molybdopterin dithiolate sulphurs in both structures, coupled with the observed copper inhibition of Cnx1G activity, provides a molecular link between molybdenum and copper metabolism.  相似文献   
244.
245.
246.
The mammalian sensory system is capable of discriminating thermal stimuli ranging from noxious cold to noxious heat. Principal temperature sensors belong to the TRP cation channel family, but the mechanisms underlying the marked temperature sensitivity of opening and closing ('gating') of these channels are unknown. Here we show that temperature sensing is tightly linked to voltage-dependent gating in the cold-sensitive channel TRPM8 and the heat-sensitive channel TRPV1. Both channels are activated upon depolarization, and changes in temperature result in graded shifts of their voltage-dependent activation curves. The chemical agonists menthol (TRPM8) and capsaicin (TRPV1) function as gating modifiers, shifting activation curves towards physiological membrane potentials. Kinetic analysis of gating at different temperatures indicates that temperature sensitivity in TRPM8 and TRPV1 arises from a tenfold difference in the activation energies associated with voltage-dependent opening and closing. Our results suggest a simple unifying principle that explains both cold and heat sensitivity in TRP channels.  相似文献   
247.
248.
An acylphosphatase (AcPase) overexpression study was carried out on SH-SY5Y neuroblastoma cells, using a green fluorescent fusion protein (AcP-GFP), with GFP acting as a reporter protein. The cellular proliferation rate was significantly reduced by overexpression of AcPase by a factor of ten. In contrast, clones transfected with two inactive AcPase mutants showed a growth rate comparable to control cells. This suggests that AcPase catalyzes the proliferative down-regulation. AcPase-overexpressing clones showed a physiological mortality rate as assessed by an MTT reduction test and by evaluation of necrotic markers. DNA fragmentation analysis and assays of caspase-3 and poly (ADP-ribose) polymerase (PARP)-active fragments showed no evidence of any apoptotic pattern. AcPase overexpression led to a marked increase in PARP activity as well as Bcl-2 content; these are commonly up-regulated during differentiative processes in neuronal cells. In fact, the typical differentiation marker, growth-associated-protein 43, was significantly up-regulated. Microscopic observations also showed a clear increase in the differentiative phenotype in AcPase-overexpressing cells. Our results clearly show that AcPase plays a primary causative role in neuronal differentiation.Received 3 May 2004; accepted 25 May 2004  相似文献   
249.
Caffeine as a psychomotor stimulant: mechanism of action   总被引:10,自引:0,他引:10  
The popularity of caffeine as a psychoactive drug is due to its stimulant properties, which depend on its ability to reduce adenosine transmission in the brain. Adenosine A1 and A2A receptors are expressed in the basal ganglia, a group of structures involved in various aspects of motor control. Caffeine acts as an antagonist to both types of receptors. Increasing evidence indicates that the psychomotor stimulant effect of caffeine is generated by affecting a particular group of projection neurons located in the striatum, the main receiving area of the basal ganglia. These cells express high levels of adenosine A2A receptors, which are involved in various intracellular processes, including the expression of immediate early genes and regulation of the dopamine- and cyclic AMP-regulated 32-kDa phosphoprotein DARPP-32. The present review focuses on the effects of caffeine on striatal signal transduction and on their involvement in caffeine-mediated motor stimulation.Received 8 July 2003; received after revision 7 September 2003; accepted 6 October 2003  相似文献   
250.
-Amylases are present in all kingdoms of the living world. Despite strong conservation of the tertiary structure, only a few amino acids are conserved in interkingdom comparisons. Animal -amylases are characterized by several typical motifs and biochemical properties. A few cases of such -amylases have been previously reported in some eubacterial species. We screened the bacterial genomes available in the sequence databases for new occurrences of animal-like -amylases. Three novel cases were found, which belong to unrelated bacterial phyla: Chloroflexus aurantiacus, Microbulbifer degradans, and Thermobifida fusca. All the animal-like -amylases in Bacteria probably result from repeated horizontal gene transfer from animals. The M. degradans genome also contains bacterial-type and plant-type -amylases in addition to the animal-type one. Thus, this species exhibits -amylases of animal, plant, and bacterial origins. Moreover, the similarities in the extra C-terminal domains (different from both the -amylase domain C and the starch-binding domain), when present, also suggest interkingdom as well as intragenomic shuffling.Received 17 October 2003; accepted 6 November 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号