首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   0篇
  国内免费   2篇
系统科学   1篇
丛书文集   2篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   81篇
研究方法   26篇
综合类   93篇
自然研究   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   16篇
  2011年   18篇
  2010年   7篇
  2008年   16篇
  2007年   8篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   6篇
  1969年   2篇
  1968年   4篇
  1967年   3篇
  1966年   4篇
  1965年   5篇
  1958年   3篇
  1957年   1篇
  1956年   1篇
  1955年   2篇
  1954年   3篇
  1947年   3篇
  1946年   1篇
  1945年   1篇
排序方式: 共有207条查询结果,搜索用时 381 毫秒
151.
To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response-including the S-phase checkpoint pathways-to delay DNA replication. Defects in ATM or its substrates Nbs1 or Chk2 (ref. 3), the Nbs1-interacting Mre11 protein, or the Chk2-regulated Cdc25A-Cdk2 cascade all cause radio-resistant DNA synthesis (RDS). It is unknown, however, whether these proteins operate in a common signaling cascade. Here we show that experimental blockade of either the Nbs1-Mre11 function or the Chk2-triggered events leads to a partial RDS phenotype in human cells. In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM. In addition, Cdk2-dependent loading of Cdc45 onto replication origins, a prerequisite for recruitment of DNA polymerase, was prevented upon irradiation of normal or Nbs1/Mre11-defective cells but not cells with defective ATM. We conclude that in response to ionizing radiation, phosphorylations of Nbs1 and Chk2 by ATM trigger two parallel branches of the DNA damage-dependent S-phase checkpoint that cooperate by inhibiting distinct steps of DNA replication.  相似文献   
152.
153.
154.
巴斯德研究所是巴斯德战胜狂犬病的产物;因为接种抗狂犬病疫苗恰恰代表了世人之所需——  相似文献   
155.
156.
Genome-scale DNA methylation maps of pluripotent and differentiated cells   总被引:3,自引:0,他引:3  
DNA methylation is essential for normal development and has been implicated in many pathologies including cancer. Our knowledge about the genome-wide distribution of DNA methylation, how it changes during cellular differentiation and how it relates to histone methylation and other chromatin modifications in mammals remains limited. Here we report the generation and analysis of genome-scale DNA methylation profiles at nucleotide resolution in mammalian cells. Using high-throughput reduced representation bisulphite sequencing and single-molecule-based sequencing, we generated DNA methylation maps covering most CpG islands, and a representative sampling of conserved non-coding elements, transposons and other genomic features, for mouse embryonic stem cells, embryonic-stem-cell-derived and primary neural cells, and eight other primary tissues. Several key findings emerge from the data. First, DNA methylation patterns are better correlated with histone methylation patterns than with the underlying genome sequence context. Second, methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during cellular differentiation, particularly in regulatory regions outside of core promoters. Third, analysis of embryonic-stem-cell-derived and primary cells reveals that 'weak' CpG islands associated with a specific set of developmentally regulated genes undergo aberrant hypermethylation during extended proliferation in vitro, in a pattern reminiscent of that reported in some primary tumours. More generally, the results establish reduced representation bisulphite sequencing as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine.  相似文献   
157.
The unexpected origin of plasmaspheric hiss from discrete chorus emissions   总被引:1,自引:0,他引:1  
Bortnik J  Thorne RM  Meredith NP 《Nature》2008,452(7183):62-66
Plasmaspheric hiss is a type of electromagnetic wave found ubiquitously in the dense plasma region that encircles the Earth, known as the plasmasphere. This important wave is known to remove the high-energy electrons that are trapped along the Earth's magnetic field lines, and therefore helps to reduce the radiation hazards to satellites and humans in space. Numerous theories to explain the origin of hiss have been proposed over the past four decades, but none have been able to account fully for its observed properties. Here we show that a different wave type called chorus, previously thought to be unrelated to hiss, can propagate into the plasmasphere from tens of thousands of kilometres away, and evolve into hiss. Our new model naturally accounts for the observed frequency band of hiss, its incoherent nature, its day-night asymmetry in intensity, its association with solar activity and its spatial distribution. The connection between chorus and hiss is very interesting because chorus is instrumental in the formation of high-energy electrons outside the plasmasphere, whereas hiss depletes these electrons at lower equatorial altitudes.  相似文献   
158.
Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.  相似文献   
159.
160.
The genome of Theobroma cacao   总被引:2,自引:0,他引:2  
We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号