首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28001篇
  免费   91篇
  国内免费   161篇
系统科学   150篇
丛书文集   199篇
教育与普及   92篇
理论与方法论   112篇
现状及发展   12238篇
研究方法   1264篇
综合类   13825篇
自然研究   373篇
  2012年   489篇
  2011年   845篇
  2010年   202篇
  2008年   583篇
  2007年   669篇
  2006年   627篇
  2005年   670篇
  2004年   687篇
  2003年   597篇
  2002年   677篇
  2001年   776篇
  2000年   797篇
  1999年   533篇
  1994年   347篇
  1992年   437篇
  1991年   361篇
  1990年   437篇
  1989年   397篇
  1988年   408篇
  1987年   428篇
  1986年   419篇
  1985年   525篇
  1984年   401篇
  1983年   397篇
  1982年   370篇
  1981年   362篇
  1980年   375篇
  1979年   859篇
  1978年   703篇
  1977年   605篇
  1976年   551篇
  1975年   598篇
  1974年   689篇
  1973年   604篇
  1972年   631篇
  1971年   810篇
  1970年   913篇
  1969年   726篇
  1968年   786篇
  1967年   706篇
  1966年   609篇
  1965年   444篇
  1964年   217篇
  1959年   235篇
  1958年   461篇
  1957年   337篇
  1956年   285篇
  1955年   270篇
  1954年   267篇
  1948年   221篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Tumour progression is a fundamental feature of the biology of cancer. Cancers do not arise de novo in their final form, but begin as small, indolent growths, which gradually acquire characteristics associated with malignancy. In the brain, for example, low-grade tumours (astrocytomas) evolve into faster growing, more dysplastic and invasive high-grade tumours (glioblastomas). To define the genetic events underlying brain tumour progression, we analysed the p53 gene in ten primary brain tumour pairs. Seven pairs consisted of tumours that were high grade both at presentation and recurrence (group A) and three pairs consisted of low-grade tumours that had progressed to higher grade tumours (group B). In group A pairs, four of the recurrent tumours contained a p53 gene mutation; in three of them, the same mutation was found in the primary tumour. In group B pairs, progression to high grade was associated with a p53 gene mutation. A subpopulation of cells were present in the low-grade tumours that contained the same p53 gene mutation predominant in the cells of the recurrent tumours that had progressed to glioblastoma. Thus, the histological progression of brain tumours was associated with a clonal expansion of cells that had previously acquired a mutation in the p53 gene, endowing them with a selective growth advantage. These experimental observations strongly support Nowell's clonal evolution model of tumour progression.  相似文献   
912.
H S Shpetner  R B Vallee 《Nature》1992,355(6362):733-735
Dynamin was initially identified in calf brain tissue as a protein of relative molecular mass 100,000 which induced nucleotide-sensitive bundling of microtubules. Purified dynamin showed only trace ATPase activity. But in combination with an activating factor removed during the purification, it exhibited microtubule-activated ATPase activity and dynamin-induced bundles showed evidence of ATP-dependent force production. Dynamin is the product of the Drosophila gene shibire, which has been implicated in synaptic vesicle recycling and, more generally, in the budding of endocytic vesicles from the plasma membrane. Dynamin also shows extensive homology with proteins that participate in vacuolar protein sorting and spindle pole-body separation in yeast, and in interferon-induced viral resistance in mammals. All members of this family contain consensus sequence elements consistent with GTP binding near their amino termini, although none has been shown to have GTPase activity. We report here that dynamin is a specific GTPase which can be stimulated to very high levels of activity by microtubules.  相似文献   
913.
The T-cell receptor is necessary and sufficient for recognition of peptides presented by major histocompatibility complex molecules. Other adhesion molecules, like CD4 or CD8, play an auxiliary role in antigen recognition by T cells. Here we analyse T-cell receptor (TCR) binding using a soluble rather than a cell-bound receptor molecule. A TCR-immunoglobulin chimaera is constructed with the variable and the first constant regions of both the TCR alpha- and beta-chains linked to the immunoglobulin light-chain constant regions. This soluble TCR is expressed, assembled and secreted as an alpha beta heterodimer by a myeloma cell line transfected with the recombinant genes. Furthermore, the soluble TCR is biologically active: it specifically inhibits antigen-dependent activation of the relevant T-cell clones and thus discriminates between proper and irrelevant peptides presented by major histocompatibility complex molecules.  相似文献   
914.
C Kleuss  H Scherübl  J Hescheler  G Schultz  B Wittig 《Nature》1992,358(6385):424-426
Regulatory GTP-binding proteins (G proteins) are membrane-attached heterotrimers (alpha, beta, gamma) that mediate cellular responses to a wide variety of extracellular stimuli. They undergo a cycle of guanine-nucleotide exchange and GTP hydrolysis, during which they dissociate into alpha-subunit and beta gamma complex. The roles of G-protein alpha-subunits in these processes and for the specificity of signal transduction are largely established; the beta- and gamma-subunits are essential for receptor-induced G-protein activation and seem to be less diverse and less specific. Although the complementary DNAs for several beta-subunits have been cloned, isolated subunits have only been studied as beta gamma complexes. Functional differences have been ascribed to the gamma-subunit on the basis of extensive sequence similarity among beta-subunits and apparent heterogeneity in gamma-subunit sequences. Beta gamma complexes can interact directly or indirectly with different effectors. They seem to be interchangeable in their interaction with pertussis toxin-sensitive alpha-subunits, so we tested this by microinjecting antisense oligonucleotides into nuclei of a rat pituitary cell line to suppress the synthesis of individual beta-subunits selectively. Here we show that two out of four subtypes of beta-subunits tested (beta 1 and beta 3) are selectively involved in the signal transduction cascades from muscarinic M4 (ref. 4) and somatostatin receptors, respectively, to voltage-dependent Ca2+ channels.  相似文献   
915.
916.
T Langer  C Lu  H Echols  J Flanagan  M K Hayer  F U Hartl 《Nature》1992,356(6371):683-689
The main stress proteins of Escherichia coli function in an ordered protein-folding reaction. DnaK (heat-shock protein 70) recognizes the folding polypeptide as an extended chain and cooperates with DnaJ in stabilizing an intermediate conformational state lacking ordered tertiary structure. Dependent on GrpE and ATP hydrolysis, the protein is then transferred to GroEL (heat-shock protein 60) which acts catalytically in the production of the native state. This sequential mechanism of chaperone action may represent an important pathway for the folding of newly synthesized polypeptides.  相似文献   
917.
Human aminopeptidase N is a receptor for human coronavirus 229E.   总被引:62,自引:0,他引:62  
Human coronaviruses (HCV) in two serogroups represented by HCV-229E and HCV-OC43 are an important cause of upper respiratory tract infections. Here we report that human aminopeptidase N, a cell-surface metalloprotease on intestinal, lung and kidney epithelial cells, is a receptor for human coronavirus strain HCV-229E, but not for HCV-OC43. A monoclonal antibody, RBS, blocked HCV-229E virus infection of human lung fibroblasts, immunoprecipitated aminopeptidase N and inhibited its enzymatic activity. HCV-229E-resistant murine fibroblasts became susceptible after transfection with complementary DNA encoding human aminopeptidase N. By contrast, infection of human cells with HCV-OC43 was not inhibited by antibody RBS and expression of aminopeptidase N did not enhance HCV-OC43 replication in mouse cells. A mutant aminopeptidase lacking the catalytic site of the enzyme did not bind HCV-229E or RBS and did not render murine cells susceptible to HCV-229E infection, suggesting that the virus-binding site may lie at or near the active site of the human aminopeptidase molecule.  相似文献   
918.
It has been suggested that Hox genes play an important part in the patterning of limbs, vertebrae and craniofacial structures by providing an ordered molecular system of positional values, termed the Hox code. Little is known about the nature of the signals that govern the establishment and regulation of Hox genes, but retinoic acid can affect the expression of these genes in cell lines and in embryonic tissues. On the basis of experimental and clinical evidence, the hindbrain and branchial region of the head are particularly sensitive to the effects of retinoic acid but the phenotypes are complex and hard to interpret, and how and if they relate to Hox expression has not been clear. Here we follow the changes induced by retinoic acid to hindbrain segmentation and the branchial arches using transgenic mice which contain lacZ reporter genes that reveal the endogenous segment-restricted expression of the Hox-B1 (Hox-2.9), Hox-B2(Hox-2.8) and Krox-20 genes. Our results show that these genes rapidly respond to exposure to retinoic acid at preheadfold stages and undergo a progressive series of changes in segmental expression that are associated with specific phenotypes in hindbrain of first branchial arch. Together the molecular and anatomical alterations indicate that retinoic acid has induced changes in the hindbrain Hox code which result in the homeotic transformation of rhombomeres (r) 2/3 to an r4/5 identity. A main feature of this rhombomeric phenotype is that the trigeminal motor nerve is transformed to a facial identity. Furthermore, in support of this change in rhombomeric identity, neural crest cells derived from r2/3 also express posterior Hox markers suggesting that the retinoic acid-induced transformation extends to multiple components of the first branchial arch.  相似文献   
919.
Proteolipid protein (PLP; M(r) 30,000) is a highly conserved major polytopic membrane protein in myelin but its cellular function remains obscure. Neurological mutant mice can often provide model systems for human genetic disorders. Mutations of the X-chromosome-linked PLP gene are lethal, identified first in the jimpy mouse and subsequently in patients with Pelizaeus-Merzbacher disease. The unexplained phenotype of these mutations includes degeneration and premature cell death of oligodendrocytes with associated hypomyelination. Here we show that a new mouse mutant rumpshaker is defined by the amino-acid substitution Ile-to-Thr at residue 186 in a membrane-embedded domain of PLP. Surprisingly, rumpshaker mice, although myelin-deficient, have normal longevity and a full complement of morphologically normal oligodendrocytes. Hypomyelination can thus be genetically separated from the PLP-dependent oligodendrocyte degeneration. We suggest that PLP has a vital function in glial cell development, distinct from its later role in myelin assembly, and that this dichotomy of action may explain the clinical spectrum of Pelizaeus-Merzbacher disease.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号