首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27957篇
  免费   91篇
  国内免费   160篇
系统科学   150篇
丛书文集   199篇
教育与普及   92篇
理论与方法论   112篇
现状及发展   12238篇
研究方法   1264篇
综合类   13780篇
自然研究   373篇
  2012年   489篇
  2011年   845篇
  2010年   202篇
  2008年   583篇
  2007年   669篇
  2006年   627篇
  2005年   670篇
  2004年   687篇
  2003年   597篇
  2002年   677篇
  2001年   776篇
  2000年   797篇
  1999年   533篇
  1994年   347篇
  1992年   437篇
  1991年   361篇
  1990年   437篇
  1989年   397篇
  1988年   408篇
  1987年   428篇
  1986年   419篇
  1985年   525篇
  1984年   401篇
  1983年   397篇
  1982年   370篇
  1981年   362篇
  1980年   375篇
  1979年   859篇
  1978年   703篇
  1977年   605篇
  1976年   551篇
  1975年   598篇
  1974年   689篇
  1973年   604篇
  1972年   631篇
  1971年   810篇
  1970年   913篇
  1969年   726篇
  1968年   786篇
  1967年   706篇
  1966年   609篇
  1965年   444篇
  1964年   217篇
  1959年   235篇
  1958年   461篇
  1957年   337篇
  1956年   285篇
  1955年   270篇
  1954年   267篇
  1948年   221篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
341.
In developing progeny of mammals the two parental genomes are differentially expressed according to imprinting marks, and embryos with only a uniparental genetic contribution die. Gene expression that is dependent on the parent of origin has also been observed in the offspring of flowering plants, and mutations in the imprinting machinery lead to embryonic lethality, primarily affecting the development of the endosperm-a structure in the seed that nourishes the embryo, analogous to the function of the mammalian placenta. Here we have generated Arabidopsis thaliana seeds in which the endosperm is of uniparental, that is, maternal, origin. We demonstrate that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm. Bypassing is only possible if the mother is mutant for any of the FIS-class genes, which encode Polycomb group chromatin-modifying factors. Thus, these data provide functional evidence that the action of the FIS complex balances the contribution of the paternal genome. As flowering plants have evolved a special reproduction system with a parallel fusion of two female with two male gametes, our findings support the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development. Furthermore, our data argue for a gametophytic origin of endosperm in flowering plants, thereby supporting a hypothesis raised in 1900 by Eduard Strasburger.  相似文献   
342.
One of the most important current scientific paradoxes is the economy with which nature uses genes. In all higher animals studied, we have found many fewer genes than we would have previously expected. The functional outputs of the eventual products of genes seem to be far more complex than the more restricted blueprint. In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). These alterations of amino-acid side chains lead to higher structural and functional protein diversity and are, therefore, a leading contender for an explanation for this seeming incongruity. Natural protein production methods typically produce PTM mixtures within which function is difficult to dissect or control. Until now it has not been possible to access pure mimics of complex PTMs. Here we report a chemical tagging approach that enables the attachment of multiple modifications to bacterially expressed (bare) protein scaffolds: this approach allows reconstitution of functionally effective mimics of higher organism PTMs. By attaching appropriate modifications at suitable distances in the widely-used LacZ reporter enzyme scaffold, we created protein probes that included sensitive systems for detection of mammalian brain inflammation and disease. Through target synthesis of the desired modification, chemistry provides a structural precision and an ability to retool with a chosen PTM in a manner not available to other approaches. In this way, combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. We therefore anticipate that this ability to build model systems will allow some of this gene product complexity to be dissected, with the aim of eventually being able to completely duplicate the patterns of a particular protein's PTMs from an in vivo assay into an in vitro system.  相似文献   
343.
Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules) and in particle physics (in the charge-parity violation of electroweak interactions). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii-Moriya interaction, which arises from spin-orbit scattering of electrons in an inversion-asymmetric crystal field. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii-Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure, causing a variety of excitations or manipulations of the magnetization and giving rise to microwave emission, magnetization switching, or magnetic motors.  相似文献   
344.
Technology: biometric recognition   总被引:2,自引:0,他引:2  
Jain AK 《Nature》2007,449(7158):38-40
  相似文献   
345.
346.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   
347.
348.
A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.  相似文献   
349.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
350.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号