首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4998篇
  免费   20篇
  国内免费   39篇
系统科学   77篇
丛书文集   108篇
教育与普及   191篇
理论与方法论   10篇
现状及发展   302篇
研究方法   691篇
综合类   3676篇
自然研究   2篇
  2021年   6篇
  2019年   6篇
  2017年   5篇
  2014年   7篇
  2012年   364篇
  2011年   426篇
  2010年   94篇
  2009年   20篇
  2008年   335篇
  2007年   419篇
  2006年   367篇
  2005年   427篇
  2004年   379篇
  2003年   367篇
  2002年   333篇
  2001年   277篇
  2000年   410篇
  1999年   103篇
  1998年   16篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   12篇
  1993年   19篇
  1992年   12篇
  1991年   22篇
  1990年   27篇
  1989年   19篇
  1988年   20篇
  1987年   18篇
  1986年   27篇
  1985年   26篇
  1984年   27篇
  1983年   24篇
  1982年   26篇
  1981年   34篇
  1980年   8篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1971年   12篇
  1970年   27篇
  1966年   9篇
  1959年   38篇
  1958年   53篇
  1957年   42篇
  1956年   27篇
  1955年   32篇
  1954年   30篇
  1948年   15篇
排序方式: 共有5057条查询结果,搜索用时 62 毫秒
31.
32.
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.  相似文献   
33.
Synaptic scaling mediated by glial TNF-alpha   总被引:1,自引:0,他引:1  
Stellwagen D  Malenka RC 《Nature》2006,440(7087):1054-1059
Two general forms of synaptic plasticity that operate on different timescales are thought to contribute to the activity-dependent refinement of neural circuitry during development: (1) long-term potentiation (LTP) and long-term depression (LTD), which involve rapid adjustments in the strengths of individual synapses in response to specific patterns of correlated synaptic activity, and (2) homeostatic synaptic scaling, which entails uniform adjustments in the strength of all synapses on a cell in response to prolonged changes in the cell's electrical activity. Without homeostatic synaptic scaling, neural networks can become unstable and perform suboptimally. Although much is known about the mechanisms underlying LTP and LTD, little is known about the mechanisms responsible for synaptic scaling except that such scaling is due, at least in part, to alterations in receptor content at synapses. Here we show that synaptic scaling in response to prolonged blockade of activity is mediated by the pro-inflammatory cytokine tumour-necrosis factor-alpha (TNF-alpha). Using mixtures of wild-type and TNF-alpha-deficient neurons and glia, we also show that glia are the source of the TNF-alpha that is required for this form of synaptic scaling. We suggest that by modulating TNF-alpha levels, glia actively participate in the homeostatic activity-dependent regulation of synaptic connectivity.  相似文献   
34.
Butler D 《Nature》2006,440(7081):135
  相似文献   
35.
The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions provide new candidates in the search for uniquely human biology.  相似文献   
36.
Shlyk-Kerner O  Samish I  Kaftan D  Holland N  Sai PS  Kless H  Scherz A 《Nature》2006,442(7104):827-830
Adjustment of catalytic activity in response to diverse ambient temperatures is fundamental to life on Earth. A crucial example of this is photosynthesis, where solar energy is converted into electrochemical potential that drives oxygen and biomass generation at temperatures ranging from those of frigid Antarctica to those of scalding hot springs. The energy conversion proceeds by concerted mobilization of electrons and protons on photoexcitation of reaction centre protein complexes. Following physicochemical paradigms, the rates of imperative steps in this process were predicted to increase exponentially with rising temperatures, resulting in different yields of solar energy conversion at the distinct growth temperatures of photosynthetic mesophiles and extremophiles. In contrast, here we show a meticulous adjustment of energy conversion rate, resulting in similar yields from mesophiles and thermophiles. The key molecular players in the temperature adjustment process consist of a cluster of hitherto unrecognized protein cavities and an adjacent packing motif that jointly impart local flexibility crucial to the reaction centre proteins. Mutations within the packing motif of mesophiles that increase the bulkiness of the amino-acid side chains, and thus reduce the size of the cavities, promote thermophilic behaviour. This novel biomechanical mechanism accounts for the slowing of the catalytic reaction above physiological temperatures in contradiction to the classical Arrhenius paradigm. The mechanism provides new guidelines for manipulating the acclimatization of enzymes to the ambient temperatures of diverse habitats. More generally, it reveals novel protein elements that are of potential significance for modulating structure-activity relationships in membrane and globular proteins alike.  相似文献   
37.
38.
Pike-Overzet K  de Ridder D  Weerkamp F  Baert MR  Verstegen MM  Brugman MH  Howe SJ  Reinders MJ  Thrasher AJ  Wagemaker G  van Dongen JJ  Staal FJ 《Nature》2006,443(7109):E5; discussion E6-E5; discussion E7
The gene IL2RG encodes the gamma-chain of the interleukin-2 receptor and is mutated in patients with X-linked severe combined immune deficiency (X-SCID). Woods et al. report the development of thymus tumours in a mouse model of X-SCID after correction by lentiviral overexpression of IL2RG and claim that these were caused by IL2RG itself. Here we find that retroviral overexpression of IL2RG in human CD34+ cells has no effect on T-cell development, whereas overexpression of the T-cell acute lymphoblastic leukaemia (T-ALL) oncogene LMO2 leads to severe abnormalities. Retroviral expression of IL2RG may therefore not be directly oncogenic--rather, the restoration of normal signalling by the interleukin-7 receptor to X-SCID precursor cells allows progression of T-cell development to stages that are permissive for the pro-leukaemic effects of ectopic LMO2.  相似文献   
39.
Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon's semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature T(c) approximately 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron-phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.  相似文献   
40.
The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号