首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   0篇
系统科学   4篇
教育与普及   1篇
理论与方法论   1篇
现状及发展   90篇
研究方法   14篇
综合类   198篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2008年   9篇
  2007年   3篇
  2006年   7篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   7篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   12篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   2篇
  1979年   17篇
  1978年   8篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   10篇
  1973年   15篇
  1972年   10篇
  1971年   8篇
  1970年   12篇
  1969年   8篇
  1968年   10篇
  1967年   11篇
  1966年   3篇
  1965年   1篇
  1964年   2篇
  1958年   1篇
  1957年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
181.
182.
Glycosyltransferase activity of Fringe modulates Notch-Delta interactions   总被引:23,自引:0,他引:23  
Brückner K  Perez L  Clausen H  Cohen S 《Nature》2000,406(6794):411-415
Ligands that are capable of activating Notch family receptors are broadly expressed in animal development, but their activity is tightly regulated to allow formation of tissue boundaries. Members of the fringe gene family have been implicated in limiting Notch activation during boundary formation, but the mechanism of Fringe function has not been determined. Here we present evidence that Fringe acts in the Golgi as a glycosyltransferase enzyme that modifies the epidermal growth factor (EGF) modules of Notch and alters the ability of Notch to bind its ligand Delta. Fringe catalyses the addition of N-acetylglucosamine to fucose, which is consistent with a role in the elongation of O-linked fucose O-glycosylation that is associated with EGF repeats. We suggest that cell-type-specific modification of glycosylation may provide a general mechanism to regulate ligand-receptor interactions in vivo.  相似文献   
183.
Changing patterns of infectious disease   总被引:23,自引:0,他引:23  
Cohen ML 《Nature》2000,406(6797):762-767
Despite a century of often successful prevention and control efforts, infectious diseases remain an important global problem in public health, causing over 13 million deaths each year. Changes in society, technology and the microorganisms themselves are contributing to the emergence of new diseases, the re-emergence of diseases once controlled, and to the development of antimicrobial resistance. Two areas of special concern in the twenty-first century are food-borne disease and antimicrobial resistance. The effective control of infectious diseases in the new millennium will require effective public health infrastructures that will rapidly recognize and respond to them and will prevent emerging problems.  相似文献   
184.
185.
A cryptic protease couples deubiquitination and degradation by the proteasome   总被引:24,自引:0,他引:24  
Yao T  Cohen RE 《Nature》2002,419(6905):403-407
The 26S proteasome is responsible for most intracellular proteolysis in eukaryotes. Efficient substrate recognition relies on conjugation of substrates with multiple ubiquitin molecules and recognition of the polyubiquitin moiety by the 19S regulatory complex--a multisubunit assembly that is bound to either end of the cylindrical 20S proteasome core. Only unfolded proteins can pass through narrow axial channels into the central proteolytic chamber of the 20S core, so the attached polyubiquitin chain must be released to allow full translocation of the substrate polypeptide. Whereas unfolding is rate-limiting for the degradation of some substrates and appears to involve chaperone-like activities associated with the proteasome, the importance and mechanism of degradation-associated deubiquitination has remained unclear. Here we report that the POH1 (also known as Rpn11 in yeast) subunit of the 19S complex is responsible for substrate deubiquitination during proteasomal degradation. The inability to remove ubiquitin can be rate-limiting for degradation in vitro and is lethal to yeast. Unlike all other known deubiquitinating enzymes (DUBs) that are cysteine proteases, POH1 appears to be a Zn(2+)-dependent protease.  相似文献   
186.
Mitochondrial DNA (mtDNA)-depletion syndromes (MDS; OMIM 251880) are phenotypically heterogeneous, autosomal-recessive disorders characterized by tissue-specific reduction in mtDNA copy number. Affected individuals with the hepatocerebral form of MDS have early progressive liver failure and neurological abnormalities, hypoglycemia and increased lactate in body fluids. Affected tissues show both decreased activity of the mtDNA-encoded respiratory chain complexes (I, III, IV, V) and mtDNA depletion. We used homozygosity mapping in three kindreds of Druze origin to map the gene causing hepatocerebral MDS to a region of 6.1 cM on chromosome 2p13, between markers D2S291 and D2S2116. This interval encompasses the gene (DGUOK) encoding the mitochondrial deoxyguanosine kinase (dGK). We identified a single-nucleotide deletion (204delA) within the coding region of DGUOK that segregates with the disease in the three kindreds studied. Western-blot analysis did not detect dGK protein in the liver of affected individuals. The main supply of deoxyribonucleotides (dNTPs) for mtDNA synthesis comes from the salvage pathway initiated by dGK and thymidine kinase-2 (TK2). The association of mtDNA depletion with mutated DGUOK suggests that the salvage-pathway enzymes are involved in the maintenance of balanced mitochondrial dNTP pools.  相似文献   
187.
In fetal alcohol syndrome (FAS), cerebellar hypoplasia is associated with impaired insulin-stimulated survival signaling. This study characterizes ethanol dose-effects on cerebellar development, expression of genes required for insulin and insulin-like growth factor (IGF) signaling, and the upstream mechanisms and downstream consequences of impaired signaling in relation to acetylcholine (ACh) homeostasis. Pregnant Long Evans rats were fed isocaloric liquid diets containing 0%, 2%, 4.5%, 6.5%, or 9.25% ethanol from gestation day 6. Ethanol caused dose-dependent increases in severity of cerebellar hypoplasia, neuronal loss, proliferation of astrocytes and microglia, and DNA damage. Ethanol also reduced insulin, IGF-I, and IGF-II receptor binding, insulin and IGF-I receptor tyrosine kinase activities, ATP, membrane cholesterol, and choline acetyltransferase (ChAT) expression. In vitro studies linked membrane cholesterol depletion to impaired insulin receptor binding and insulin-stimulated ChAT. In conclusion, cerebellar hypoplasia in FAS is mediated by insulin/IGF resistance with attendant impairments in energy production and ACh homeostasis. Received 4 May 2006; received after revision 13 June 2006; accepted 20 June 2006  相似文献   
188.
189.
We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10??). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.  相似文献   
190.
Half-metallic graphene nanoribbons   总被引:2,自引:0,他引:2  
Son YW  Cohen ML  Louie SG 《Nature》2006,444(7117):347-349
Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals--for example, the Heusler compounds--and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic devices. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at the nanometre scale, based on graphene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号