首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   2篇
  国内免费   1篇
系统科学   6篇
丛书文集   1篇
理论与方法论   1篇
现状及发展   38篇
研究方法   64篇
综合类   234篇
自然研究   25篇
  2021年   1篇
  2020年   1篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   5篇
  2012年   40篇
  2011年   60篇
  2010年   10篇
  2009年   1篇
  2008年   33篇
  2007年   43篇
  2006年   37篇
  2005年   26篇
  2004年   25篇
  2003年   23篇
  2002年   31篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1976年   1篇
排序方式: 共有369条查询结果,搜索用时 265 毫秒
211.
Since HIV/AIDS was first recognized in 1981, an urgent need has existed for the development of novel therapeutic strategies to treat the disease. Due to the current antiretroviral therapy not being curative, human stem cell-based therapeutic intervention has emerged as an approach for its treatment. Genetically modified hematopoietic stem cells (HSCs) possess the potential to self-renew, reconstitute the immune system with HIV-resistant cells, and thus control, or even eliminate, viral replication. However, HSCs may be difficult to isolate in sufficient number from HIV-infected individuals for transplantation and/or re-infusion of autologous HSCs preparations would also include some contaminating HIV-infected cells. Furthermore, since genetic modification of HSCs is not completely efficient, the risk of providing unprotected immune cells to become new targets for HIV to infect could contribute to continued immune system failure. Therefore, induced pluripotent stem cells (iPSCs) should be considered a new potential source of cells to be engineered for HIV resistance and subsequently differentiated into clonal anti-HIV HSCs or hematopoietic progeny for transplant. In this article, we provide an overview of the current possible cellular therapies for treating HIV/AIDS.  相似文献   
212.
Endogenous electric fields (EF) may provide an overriding cue for directional cell migration during wound closure. Perceiving a constant direction requires active sodium-hydrogen exchanger (pNHE3) at the leading edge of HEK 293 cells but its activation mechanism is not yet fully understood. Because protein kinase C (PKC) is required in electrotaxis, we asked whether NHE3 is activated by PKC during wound healing. Using pharmacological (pseudosubstrate and edelfosine) inhibition, we showed that inhibition of PKCη isoform impairs directional cell migration in HEK 293 cells in the presence of a persistent directional cue (0.25–0.3 V/mm of EF for 2 h). Further, we found that pNHE3 forms complexes with both PKCη and ?-tubulin, suggesting that these molecules may regulate the microtubule-organizing center. In addition, cellular pNHE3 content was reduced significantly when PKCη was inhibited during directional cell migration. Taken together, these data suggest that PKCη-dependent phosphorylation of NHE3 and the formation of pNHE3/PKCη/?-tubulin complexes at the leading edge of the cell are required for directional cell migration in an EF.  相似文献   
213.
Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.  相似文献   
214.
Familial clustering studies indicate that breast cancer risk has a substantial genetic component. To identify new breast cancer risk variants, we genotyped approximately 300,000 SNPs in 1,600 Icelandic individuals with breast cancer and 11,563 controls using the Illumina Hap300 platform. We then tested selected SNPs in five replication sample sets. Overall, we studied 4,554 affected individuals and 17,577 controls. Two SNPs consistently associated with breast cancer: approximately 25% of individuals of European descent are homozygous for allele A of rs13387042 on chromosome 2q35 and have an estimated 1.44-fold greater risk than noncarriers, and for allele T of rs3803662 on 16q12, about 7% are homozygous and have a 1.64-fold greater risk. Risk from both alleles was confined to estrogen receptor-positive tumors. At present, no genes have been identified in the linkage disequilibrium block containing rs13387042. rs3803662 is near the 5' end of TNRC9 , a high mobility group chromatin-associated protein whose expression is implicated in breast cancer metastasis to bone.  相似文献   
215.
We investigated the role of protein tyrosine phosphatase 1B (PTP1B) in mammary tumorigenesis using both genetic and pharmacological approaches. It has been previously shown that transgenic mice with a deletion mutation in the region of Erbb2 encoding its extracellular domain (referred to as NDL2 mice, for 'Neu deletion in extracellular domain 2') develop mammary tumors that progress to lung metastasis. However, deletion of PTP1B activity in the NDL2 transgenic mice either by breeding with Ptpn1-deficient mice or by treatment with a specific PTP1B inhibitor results in significant mammary tumor latency and resistance to lung metastasis. In contrast, specific overexpression of PTP1B in the mammary gland leads to spontaneous breast cancer development. The regulation of ErbB2-induced mammary tumorigenesis by PTB1B occurs through the attenuation of both the MAP kinase (MAPK) and Akt pathways. This report provides a rationale for the development of PTP1B as a new therapeutic target in breast cancer.  相似文献   
216.
Wound healing is essential for maintaining the integrity of multicellular organisms. In every species studied, disruption of an epithelial layer instantaneously generates endogenous electric fields, which have been proposed to be important in wound healing. The identity of signalling pathways that guide both cell migration to electric cues and electric-field-induced wound healing have not been elucidated at a genetic level. Here we show that electric fields, of a strength equal to those detected endogenously, direct cell migration during wound healing as a prime directional cue. Manipulation of endogenous wound electric fields affects wound healing in vivo. Electric stimulation triggers activation of Src and inositol-phospholipid signalling, which polarizes in the direction of cell migration. Notably, genetic disruption of phosphatidylinositol-3-OH kinase-gamma (PI(3)Kgamma) decreases electric-field-induced signalling and abolishes directed movements of healing epithelium in response to electric signals. Deletion of the tumour suppressor phosphatase and tensin homolog (PTEN) enhances signalling and electrotactic responses. These data identify genes essential for electrical-signal-induced wound healing and show that PI(3)Kgamma and PTEN control electrotaxis.  相似文献   
217.
Chen YH  Hu L  Punta M  Bruni R  Hillerich B  Kloss B  Rost B  Love J  Siegelbaum SA  Hendrickson WA 《Nature》2010,467(7319):1074-1080
The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 ? resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.  相似文献   
218.
With many genomes sequenced, a pressing challenge in biology is predicting the function of the proteins that the genes encode. When proteins are unrelated to others of known activity, bioinformatics inference for function becomes problematic. It would thus be useful to interrogate protein structures for function directly. Here, we predict the function of an enzyme of unknown activity, Tm0936 from Thermotoga maritima, by docking high-energy intermediate forms of thousands of candidate metabolites. The docking hit list was dominated by adenine analogues, which appeared to undergo C6-deamination. Four of these, including 5-methylthioadenosine and S-adenosylhomocysteine (SAH), were tested as substrates, and three had substantial catalytic rate constants (10(5) M(-1 )s(-1)). The X-ray crystal structure of the complex between Tm0936 and the product resulting from the deamination of SAH, S-inosylhomocysteine, was determined, and it corresponded closely to the predicted structure. The deaminated products can be further metabolized by T. maritima in a previously uncharacterized SAH degradation pathway. Structure-based docking with high-energy forms of potential substrates may be a useful tool to annotate enzymes for function.  相似文献   
219.
Shoichet BK 《Nature》2004,432(7019):862-865
Virtual screening uses computer-based methods to discover new ligands on the basis of biological structures. Although widely heralded in the 1970s and 1980s, the technique has since struggled to meet its initial promise, and drug discovery remains dominated by empirical screening. Recent successes in predicting new ligands and their receptor-bound structures, and better rates of ligand discovery compared to empirical screening, have re-ignited interest in virtual screening, which is now widely used in drug discovery, albeit on a more limited scale than empirical screening.  相似文献   
220.
ABSTRACT

Recent data from the mitochondrial genome reveal six lineages of Gulf Coast Waterdogs traditionally classified as Necturus beyeri. Here, we use patterns of colour and body size, along with previously published data, to reveal a large, heavily spotted phenotype with an unstriped larva possessing numerous white spots; we re-describe N. beyeri to correspond to this phenotype. We also reveal a small, weakly spotted phenotype possessing an unstriped larva lacking numerous white spots. This phenotype characterises the Apalachicola and Escambia lineages, which current evidence suggests are paraphyletic. We reject taxonomies that place these two lineages in N. lodingi because the type specimen of this species appears to be a melanistic member of N. beyeri. Therefore, we describe the Apalachicola and Escambia lineages as independent new species.

http://ww.zoobank.org/urn:lsid:zoobank.org:act:C8508CCB-F54F-4DC8-B61D-56966A3F1CC8

http://www.zoobank.org/urn:lsid:zoobank.org:act:F044B2CC-55F0-4FFA-A312-9CAD9E73CD69  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号