首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   0篇
  国内免费   1篇
教育与普及   7篇
现状及发展   3篇
研究方法   17篇
综合类   78篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   11篇
  1999年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1971年   1篇
  1970年   4篇
  1966年   1篇
  1959年   1篇
  1958年   3篇
  1954年   1篇
排序方式: 共有105条查询结果,搜索用时 62 毫秒
31.
Marsden BG 《Nature》2000,407(6807):952-3, 955
  相似文献   
32.
Cruz A  Green BG 《Nature》2000,403(6772):889-892
The first electrophysiological recordings from animal and human taste nerves gave clear evidence of thermal sensitivity, and studies have shown that as many as half of the neurons in mammalian taste pathways respond to temperature. Because temperature has never been shown to induce sensations of taste, it has been assumed that thermal stimulation in the gustatory system is somehow nulled. Here we show that heating or cooling small areas of the tongue can in fact cause sensations of taste: warming the anterior edge of the tongue (chorda tympani nerve) from a cold temperature can evoke sweetness, whereas cooling can evoke sourness and/or saltiness. Thermal taste also occurs on the rear of the tongue (glossopharyngeal nerve), but the relationship between temperature and taste is different there than on the front of the tongue. These observations indicate the human gustatory system contains several different types of thermally sensitive neurons that normally contribute to the sensory code for taste.  相似文献   
33.
Fringe forms a complex with Notch   总被引:4,自引:0,他引:4  
Ju BG  Jeong S  Bae E  Hyun S  Carroll SB  Yim J  Kim J 《Nature》2000,405(6783):191-195
The Fringe protein of Drosophila and its vertebrate homologues function in boundary determination during pattern formation. Fringe has been proposed to inhibit Serrate-Notch signalling but to potentiate Delta-Notch signalling. Here we show that Fringe and Notch form a complex through both the Lin-Notch repeats and the epidermal growth factor repeats 22-36 (EGF22-36) of Notch when they are co-expressed. The Abruptex59b (Ax59b) and AxM1 mutations, which are caused by missense mutations in EGF repeats 24 and 25, respectively, abolish the Fringe-Notch interaction through EGF22-36, whereas the l(1)N(B) mutation in the third Lin-Notch repeat of Notch abolishes the interaction through Lin-Notch repeats. Ax mutations also greatly affect the Notch response to ectopic Fringe in vivo. Results from in vitro protein mixing experiments and subcellular colocalization experiments indicate that the Fringe-Notch complex may form before their secretion. These findings explain how Fringe acts cell-autonomously to modulate the ligand preference of Notch and why the Fringe-Notch relationship is conserved between phyla and in the development of very diverse structures.  相似文献   
34.
Cyclin D control of growth rate in plants   总被引:49,自引:0,他引:49  
Cockcroft CE  den Boer BG  Healy JM  Murray JA 《Nature》2000,405(6786):575-579
The mechanisms by which plants modulate their growth rate in response to environmental and developmental conditions are unknown, but are presumed to involve specialized regions called meristems where cell division is concentrated. The possible role of cell division in influencing meristem activity and overall plant growth rate is controversial, with a prevailing view that cell division is secondary to higher order meristem controls. Here we show that a reduction in the length of the cell-cycle G1 phase and faster cell cycling occur when the rate of cell division in transgenic tobacco plants is increased by the plant D-type cyclin CycD2 (ref. 8). The plants have normal cell and meristem sizes, but elevated overall growth rates, an increased rate of leaf initiation and accelerated development in all stages from seedling to maturity. We conclude that cell division is a principal determinant of meristem activity and overall growth rate, and propose that modulation of plant growth rate is achieved through regulation of G1.  相似文献   
35.
36.
37.
The Rio Tinto, known by the Phoenicians as 'Ur-yero', or 'River of Fire', because of its deep red colour and high acidity, flows through the world's largest pyritic belt in southwestern Spain. Surprisingly, eukaryotic microbes are the principal contributors of biomass in this hostile river, which has a pH of 2 and contains much higher concentrations of heavy metals than are typically found in fresh waters. Here we show that the Rio Tinto shows an unexpected degree of eukaryotic diversity and includes new lineages that we have identified by sequence analysis of genes encoding small-subunit ribosomal RNAs. The diversity of these eukaryotes is much greater than that of prokaryotes, whose metabolism is responsible for the extreme environment.  相似文献   
38.
Atomic-scale images of charge ordering in a mixed-valence manganite   总被引:3,自引:0,他引:3  
Renner Ch  Aeppli G  Kim BG  Soh YA  Cheong SW 《Nature》2002,416(6880):518-521
  相似文献   
39.
Genome sequence of Yersinia pestis, the causative agent of plague   总被引:59,自引:0,他引:59  
The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.  相似文献   
40.
Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ?∝?E(α). These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号