全文获取类型
收费全文 | 7623篇 |
免费 | 22篇 |
国内免费 | 98篇 |
专业分类
系统科学 | 132篇 |
丛书文集 | 561篇 |
教育与普及 | 373篇 |
理论与方法论 | 17篇 |
现状及发展 | 694篇 |
研究方法 | 1046篇 |
综合类 | 4915篇 |
自然研究 | 5篇 |
出版年
2021年 | 13篇 |
2017年 | 27篇 |
2016年 | 23篇 |
2015年 | 18篇 |
2014年 | 32篇 |
2013年 | 32篇 |
2012年 | 485篇 |
2011年 | 612篇 |
2010年 | 161篇 |
2009年 | 40篇 |
2008年 | 524篇 |
2007年 | 528篇 |
2006年 | 548篇 |
2005年 | 544篇 |
2004年 | 499篇 |
2003年 | 463篇 |
2002年 | 382篇 |
2001年 | 335篇 |
2000年 | 470篇 |
1999年 | 165篇 |
1998年 | 22篇 |
1996年 | 26篇 |
1994年 | 23篇 |
1993年 | 33篇 |
1992年 | 22篇 |
1991年 | 35篇 |
1990年 | 25篇 |
1989年 | 36篇 |
1988年 | 27篇 |
1987年 | 27篇 |
1986年 | 38篇 |
1985年 | 36篇 |
1984年 | 33篇 |
1983年 | 31篇 |
1982年 | 37篇 |
1981年 | 30篇 |
1980年 | 13篇 |
1979年 | 20篇 |
1971年 | 16篇 |
1970年 | 29篇 |
1959年 | 116篇 |
1958年 | 216篇 |
1957年 | 153篇 |
1956年 | 122篇 |
1955年 | 129篇 |
1954年 | 146篇 |
1953年 | 81篇 |
1952年 | 89篇 |
1951年 | 57篇 |
1948年 | 34篇 |
排序方式: 共有7743条查询结果,搜索用时 0 毫秒
81.
82.
83.
84.
85.
Adjustment of catalytic activity in response to diverse ambient temperatures is fundamental to life on Earth. A crucial example of this is photosynthesis, where solar energy is converted into electrochemical potential that drives oxygen and biomass generation at temperatures ranging from those of frigid Antarctica to those of scalding hot springs. The energy conversion proceeds by concerted mobilization of electrons and protons on photoexcitation of reaction centre protein complexes. Following physicochemical paradigms, the rates of imperative steps in this process were predicted to increase exponentially with rising temperatures, resulting in different yields of solar energy conversion at the distinct growth temperatures of photosynthetic mesophiles and extremophiles. In contrast, here we show a meticulous adjustment of energy conversion rate, resulting in similar yields from mesophiles and thermophiles. The key molecular players in the temperature adjustment process consist of a cluster of hitherto unrecognized protein cavities and an adjacent packing motif that jointly impart local flexibility crucial to the reaction centre proteins. Mutations within the packing motif of mesophiles that increase the bulkiness of the amino-acid side chains, and thus reduce the size of the cavities, promote thermophilic behaviour. This novel biomechanical mechanism accounts for the slowing of the catalytic reaction above physiological temperatures in contradiction to the classical Arrhenius paradigm. The mechanism provides new guidelines for manipulating the acclimatization of enzymes to the ambient temperatures of diverse habitats. More generally, it reveals novel protein elements that are of potential significance for modulating structure-activity relationships in membrane and globular proteins alike. 相似文献
86.
The Southern Ocean biogeochemical divide 总被引:1,自引:0,他引:1
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other. 相似文献
87.
88.
90.