首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
教育与普及   4篇
现状及发展   7篇
综合类   18篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
利用两段式无压烧结和放电等离子体烧结工艺(SPS)分别制备出一系列晶粒尺寸小于100nm的高密度纳米晶钛酸钡陶瓷.通过原位变温拉曼光谱对纳米晶钛酸钡陶瓷进行相结构的分析,结果表明:纳米晶钛酸钡陶瓷和大晶粒钛酸钡陶瓷一样随温度的降低经历从立方→四方→正交→三方的相转变;8nm钛酸钡陶瓷呈现多相共存和相变区间弥散的结构特性.  相似文献   
22.
微波在无机材料热处理中的应用   总被引:4,自引:0,他引:4  
微波是波长介于可见光与通讯波之间的电磁波。微波照射可以引起物质的发热而升温。其原理是电磁波耦合内部的极化因子并使之高频反转。文中归纳影响材料微波加热效应的材料相关因素有介电常数、损耗正切、耦合温度、材料密度等因素,列举了目前微波加热处理的关注领域,主要有微波合成、微波焊接、微波烧结等。其中,微波将在原子扩散、结晶相变和复合材料设计中发挥特殊的优势。  相似文献   
23.
微波促进陶瓷烧结的微观机制   总被引:3,自引:0,他引:3  
微波能促进陶瓷的烧结,已是不争的事实,但对如何促进的微观机制的理解很不一致,本文从微波电场使带电缺陷,如空位间隙离子,产生定向移动的角度.分析了微波对扩散的促进作用,进而指出在微波烧结中,相对于常规烧结,微波只是促进了平行于电场方向的致密化,在宏观上对于电场方向不随时间转向的偏振电磁波,应能观察到平行电场方向的收缩率大于垂直于电场方向的收缩率.  相似文献   
24.
采用因子分析和聚类分析法,对海南省高新技术产业发展的经济指标进行比较分析,结果表明:海南省高新技术产业按照因子分析提取的3个公因子单独排名,在全国并不十分落后,但综合排名居全国倒数第2位;广东省高新技术产业发展主要以市场为依托的模式;北京市主要以政策为依托的模式,但也有市场因素的优势;天津、上海、江苏主要以政策为依托的模式;包括海南在内的其他区域,高新技术产业发展较为滞后,且具有共同的结构性特征.  相似文献   
25.
能源问题是当今世界的热点问题之一。作为最重要的可再生清洁能源之一,氢能是解决当前能源危机的重要途径之一。本文综述了电解水制氢原理和目前电解水制氢的发展现状,并预测了电催化分解水制氢的发展与应用前景。  相似文献   
26.
介绍了一种用于制备高技术陶瓷的新型烧结技术——微波烧结。通过微波烧结腔合理设计,保温结构布置与负载阻抗匹配,对氧化锆增韧氧化铝(ZTA),四方相多晶氧化锆(TZP)和氮化硅(Si_3N_4)陶瓷实现了快速烧结,并达到较高致密度。扫描电镜,X射线衍射分析和力学性能测试结果表明,与常规烧结方法相比,微波烧结不但可显著缩短烧结时间,并可获得晶粒细小均匀的陶瓷显微结构。  相似文献   
27.
本文介绍的电子点火器,构思新颖、独特,它巧妙地利用电子线路快速、灵活、灵敏、容易变换、易于控制的特点,既使电火花能量增强,油汽得到充分烧燃而节能,又使系统耗电减少,得以持久工作,提高元件耐用度。  相似文献   
28.
分析带电粒子在微波电场中动力学方程的解,可知微波电场对带电粒子做的功一部分变成粒子为克服周围环境阻尼力做功,另一部分变成粒子向外辐射的电磁波能量.材料本身吸收的微波能量就是材料内部所有带电粒子克服阻尼做功之和.材料对微波的吸收能力与阻尼系数关系极大.在金属中,自由电子受到的阻尼力非常小,所以金属对微波几乎全反射.在陶瓷材料中,带电粒子受到的阻尼非常大,所以陶瓷也很难吸收微波,与金属的全反射相反,微波几乎全部穿透陶瓷材料.随着温度的升高,陶瓷材料中带电粒子受的阻尼力下降,其对微波的吸收能力也大大增强.  相似文献   
29.
本文从全球能源需求持续上涨及传统光伏电池成本居高不下的背景出发,综述了光伏电池发展中的新概念.其中,具有代表性的光伏电池的薄层化、柔性化及叠层化等趋势,使得光伏电池能够更加充分地吸收太阳光,表现出更高的能量转换效率,同时具备更加低廉的成本及更为广泛的应用领域.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号