首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43900篇
  免费   239篇
  国内免费   538篇
系统科学   1210篇
丛书文集   75篇
教育与普及   277篇
理论与方法论   507篇
现状及发展   29055篇
研究方法   2篇
综合类   11364篇
自然研究   2187篇
  2014年   392篇
  2013年   799篇
  2011年   2357篇
  2009年   591篇
  2008年   586篇
  2007年   623篇
  2006年   742篇
  2005年   915篇
  2004年   2039篇
  2003年   1658篇
  2002年   1304篇
  2001年   887篇
  2000年   417篇
  1999年   670篇
  1998年   638篇
  1997年   770篇
  1996年   527篇
  1995年   394篇
  1994年   678篇
  1993年   687篇
  1992年   641篇
  1991年   578篇
  1990年   633篇
  1989年   465篇
  1988年   446篇
  1987年   440篇
  1986年   539篇
  1985年   640篇
  1984年   610篇
  1983年   528篇
  1982年   704篇
  1981年   751篇
  1980年   811篇
  1979年   1042篇
  1978年   997篇
  1977年   1005篇
  1976年   909篇
  1975年   870篇
  1974年   595篇
  1973年   937篇
  1972年   1011篇
  1971年   943篇
  1970年   907篇
  1969年   899篇
  1968年   863篇
  1967年   721篇
  1966年   578篇
  1965年   503篇
  1964年   450篇
  1963年   414篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Anandamide is a lipid messenger that carries out a wide variety of biological functions. It has been suggested that anandamide accumulation involves binding to a saturable cellular component. To identify the structure(s) involved in this process, we analyzed the intracellular distribution of both biotinylated and radiolabeled anandamide, providing direct evidence that lipid droplets, also known as adiposomes, constitute a dynamic reservoir for the sequestration of anandamide. In addition, confocal microscopy and biochemical studies revealed that the anandamide-hydrolase is also spatially associated with lipid droplets, and that cells with a larger adiposome compartment have an enhanced catabolism of anandamide. Overall, these findings suggest that adiposomes may have a critical role in accumulating anandamide, possibly by connecting plasma membrane to internal organelles along the metabolic route of this endocannabinoid. S. Oddi, F. Fezza: These authors contributed equally to the study.  相似文献   
962.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:2,自引:0,他引:2  
The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods.  相似文献   
963.
The ability to produce differentiated cell types at will offers one approach to cell therapy and therefore the treatment and cure of degenerative diseases such as diabetes and liver failure. Until recently it was thought that differentiated cells could only be produced from embryonic or adult stem cells. However, we now know that this is not the case, and there is a growing body of evidence to show that one differentiated cell type can convert into a completely different phenotype (transdifferentiation). Understanding the cellular and molecular basis of transdifferentiation will allow us to reprogram cells for transplantation. This approach will complement the use of embryonic and adult stem cells in the treatment of degenerative disorders. In this review, we will focus on some well-documented examples of transdifferentiation.  相似文献   
964.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:3,自引:0,他引:3  
Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues.  相似文献   
965.
The urokinase receptor and integrins in cancer progression   总被引:2,自引:0,他引:2  
Enhanced levels of expression of urokinase receptor (uPAR) and certain integrins have been linked to cancer cell progression. This has classically been attributed to matrix degradation via the activation of the urokinase (uPA)/plasmin system and modulation of cell motility and survival through integrin engagement. More recently, uPAR has been shown to play multiple roles independent of protease activity. Specifically, uPAR has been shown to be intimately involved in the regulation of cell adhesion, migration and proliferation in part through interactions with other membrane partners, including integrins. The goal of this review is to summarize recent insights in the function of uPAR/integrin interactions, to provide a framework for understanding the importance of these interactions in the context of cancer, and to highlight its potential as a target for therapeutic intervention.  相似文献   
966.
The utility F-box for protein destruction   总被引:3,自引:1,他引:2  
A signature feature of all living organisms is their utilization of proteins to construct molecular machineries that undertake the complex network of cellular activities. The abundance of a protein element is temporally and spatially regulated in two opposing aspects: de novo synthesis to manufacture the required amount of the protein, and destruction of the protein when it is in excess or no longer needed. One major route of protein destruction is coordinated by a set of conserved molecules, the F-box proteins, which promote ubiquitination in the ubiquitin-proteasome pathway. Here we discuss the functions of F-box proteins in several cellular scenarios including cell cycle progression, synapse formation, plant hormone responses, and the circadian clock. We particularly emphasize the mechanisms whereby F-box proteins recruit specific substrates and regulate their abundance in the context of SCF E3 ligases. For some exceptions, we also review how F-box proteins function through non-SCF mechanisms.  相似文献   
967.
Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists. Received 30 May 2007; received after revision 15 August 2007; accepted 13 September 2007  相似文献   
968.
Endocrine-dependent expression of circadian clock genes in insects   总被引:1,自引:0,他引:1  
Current models state that insect peripheral oscillators are directly responsive to light, while mammalian peripheral clock genes are coordinated by a master clock in the brain via intermediate factors, possibly hormonal. We show that the expression levels of two circadian clock genes, period (per) and Par Domain Protein 1 (Pdp1) in the peripheral tissue of an insect model species, the linden bug Pyrrhocoris apterus, are inversely affected by contrasting photoperiods. The effect of photoperiod on per and Pdp1 mRNA levels was found to be mediated by the corpus allatum, an endocrine gland producing juvenile hormone. Our results provide the first experimental evidence for the effect of an endocrine gland on circadian clock gene expression in insects. Received 31 October 2007; received after revision 7 January 2008; accepted 9 January 2008 D. Dolezel, L. Zdechovanova: These authors contributed equally to this work.  相似文献   
969.
Beside its role as a neurotransmitter in the central nervous system, serotonin appears to be a central physiologic mediator of many gastrointestinal (GI) functions and a mediator of the brain-gut connection. By acting directly and via modulation of the enteric nervous system, serotonin has numerous effects on the GI tract. The main gut disturbances in which serotonin is involved are acute chemotherapy-induced nausea and vomiting, carcinoid syndrome and irritable bowel syndrome. Serotonin also has mitogenic properties. Platelet-derived serotonin is involved in liver regeneration after partial hepatectomy. In diseased liver, serotonin may play a crucial role in the progression of hepatic fibrosis and the pathogenesis of steatohepatitis. Better understanding of the role of the serotonin receptor subtypes and serotonin mechanisms of action in the liver and gut may open new therapeutic strategies in hepato-gastrointestinal diseases. Received 15 August 2007; received after revision 1 November 2007; accepted 5 November 2007  相似文献   
970.
Regulation of phagocyte migration and recruitment by Src-family kinases   总被引:2,自引:0,他引:2  
Src-family kinases (SFKs) regulate different granulocyte and monocyte/macrophage responses. Accumulating evidence suggests that members of this family are implicated in signal transduction pathways regulating phagocytic cell migration and recruitment into inflammatory sites. Macrophages with a genetic deficiency of SFKs display marked alterations in cytoskeleton dynamics, polarization and migration. This same phenotype is found in cells with either a lack of SFK substrates and/or interacting proteins such as Pyk2/FAK, c-Cbl and p190RhoGAP. Notably, SFKs and their downstream targets also regulate monocyte recruitment into inflammatory sites. Depending on the type of assay used, neutrophil migration in vitro may be either dependent on or independent of SFKs. Also neutrophil recruitment in in vivo models of inflammation may be regulated differently by SFKs depending on the tissue involved. In this review we will discuss possible mechanisms by which SFKs may regulate phagocytic cell migratory abilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号