首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20513篇
  免费   1383篇
  国内免费   887篇
系统科学   1740篇
丛书文集   444篇
教育与普及   280篇
理论与方法论   336篇
现状及发展   1032篇
研究方法   75篇
综合类   18873篇
自然研究   3篇
  2024年   61篇
  2023年   129篇
  2022年   251篇
  2021年   297篇
  2020年   217篇
  2019年   132篇
  2018年   861篇
  2017年   930篇
  2016年   658篇
  2015年   425篇
  2014年   599篇
  2013年   622篇
  2012年   959篇
  2011年   1792篇
  2010年   1564篇
  2009年   1255篇
  2008年   1380篇
  2007年   1644篇
  2006年   735篇
  2005年   695篇
  2004年   612篇
  2003年   551篇
  2002年   545篇
  2001年   458篇
  2000年   408篇
  1999年   567篇
  1998年   525篇
  1997年   525篇
  1996年   486篇
  1995年   492篇
  1994年   425篇
  1993年   336篇
  1992年   302篇
  1991年   290篇
  1990年   258篇
  1989年   229篇
  1988年   204篇
  1987年   147篇
  1986年   73篇
  1985年   47篇
  1984年   10篇
  1983年   14篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   9篇
  1978年   8篇
  1976年   6篇
  1973年   5篇
  1970年   5篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
991.
The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems—PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine—to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as GS that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.  相似文献   
992.
Long-term potentiation (LTP) defines persistent increases in neurotransmission strength at synapses that are triggered by specific patterns of neuronal activity. LTP, the most widely accepted molecular model for learning, is best characterised at glutamatergic synapses on dendritic spines. In this context, LTP involves increases in dendritic spine size and the insertion of glutamate receptors into the post-synaptic spine membrane, which together boost post-synaptic responsiveness to neurotransmitters. In dendrites, the material required for LTP is sourced from an organelle termed the endosomal-recycling compartment (ERC), which is localised to the base of dendritic spines. When LTP is induced, material derived from the recycling compartment, which contains α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptors (AMPARs), is mobilised into dendritic spines feeding the increased need for receptors and membrane at the spine neck and head. In this review, we discuss the importance of endosomal-recycling and the role of key proteins which control these processes in the context of LTP.  相似文献   
993.
994.
Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca2+ and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 (dPC12), dSH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in dPC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca2+ and ΔΨm. The response to Baf is regulated by cytosolic Ca2+ fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf.  相似文献   
995.
996.
Neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate spontaneous activity, resting membrane potential, input resistance, afterpotential, rebound activity, and dendritic integration. To evaluate the role of HCN2 for hippocampal synaptic plasticity, we recorded long-term potentiation (LTP) in the direct perforant path (PP) to CA1 pyramidal cells. LTP was enhanced in mice carrying a global deletion of the channel (HCN2−/−) but not in a pyramidal neuron-restricted knockout. This precludes an influence of HCN2 located in postsynaptic pyramidal neurons. Additionally, the selective HCN blocker zatebradine reduced the activity of oriens-lacunosum moleculare interneurons in wild-type but not HCN2−/− mice and decreased the frequency of spontaneous inhibitory currents in postsynaptic CA1 pyramidal cells. Finally, we found amplified LTP in the PP of mice carrying an interneuron-specific deletion of HCN2. We conclude that HCN2 channels in inhibitory interneurons modulate synaptic plasticity in the PP by facilitating the GABAergic output onto pyramidal neurons.  相似文献   
997.
998.
Borna disease virus (BDV) persistently infects neurons of the central nervous system of various hosts, including rats. Since type I IFN-mediated antiviral response efficiently blocks BDV replication in primary rat embryo fibroblasts, it has been speculated that BDV is not effectively sensed by the host innate immune system in the nervous system. To test this assumption, organotypical rat hippocampal slice cultures were infected with BDV for up to 4 weeks. This resulted in the secretion of IFN and the up-regulation of IFN-stimulated genes. Using the rat Mx protein as a specific marker for IFN-induced gene expression, astrocytes and microglial cells were found to be Mx positive, whereas neurons, the major cell type in which BDV is replicating, lacked detectable levels of Mx protein. In uninfected cultures, neurons also remained Mx negative even after treatment with high concentrations of IFN-α. This non-responsiveness correlated with a lack of detectable nuclear translocation of both pSTAT1 and pSTAT2 in these cells. Consistently, neuronal dissemination of BDV was not prevented by treatment with IFN-α. These data suggest that the poor innate immune response in rat neurons renders this cell type highly susceptible to BDV infection even in the presence of exogenous IFN-α. Intriguingly, in contrast to rat neurons, IFN-α treatment of mouse neurons resulted in the up-regulation of Mx proteins and block of BDV replication, indicating species-specific differences in the type I IFN response of neurons between mice and rats.  相似文献   
999.
In this review I argue that Puech draws on two important currents in modern thought: the criticism of the ontological and social priority of conflict, and the rehabilitation of praxis vis-à-vis theoria. Still, his plea for a non-confrontational art of living leaves important questions unanswered. What is the problem exactly? What does exactly count as (non)confrontational? What is non-confrontation exactly meant to solve? What is the antiposition here? And: how does this new (or rather: old) art of living relate to the political and ethical varieties of Technology Assessment?  相似文献   
1000.
Multicellular organisms contain numerous symbiotic microorganisms, collectively called microbiomes. Recently, microbiomic research has shown that these microorganisms are responsible for the proper functioning of many of the systems (digestive, immune, nervous, etc.) of multicellular organisms. This has inclined some scholars to argue that it is about time to reconceptualise the organism and to develop a concept that would place the greatest emphasis on the vital role of microorganisms in the life of plants and animals. We believe that, unfortunately, there is a problem with this suggestion, since there is no such thing as a universal concept of the organism which could constitute a basis for all biological sciences. Rather, the opposite is true: numerous alternative definitions exist. Therefore, comprehending how microbiomics is changing our understanding of organisms may be a very complex matter. In this paper we will demonstrate that this pluralism proves that claims about a change in our understanding of organisms can be treated as both true and untrue. Mainly, we assert that the existing concepts differ substantially, and that only some of them have to be reconsidered in order to incorporate the discoveries of microbiomics, while others are already flexible enough to do so. Taking into account the plurality of conceptualisations within different branches of modern biology, we will conduct our discussion using the developmental and the cooperation–conflict concepts of the organism. Then we will explain our results by referring to the recent philosophical debate on the nature of the concept of the organism within biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号