首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6396篇
  免费   76篇
  国内免费   32篇
系统科学   186篇
丛书文集   57篇
教育与普及   4篇
理论与方法论   106篇
现状及发展   3347篇
研究方法   264篇
综合类   2471篇
自然研究   69篇
  2018年   178篇
  2017年   221篇
  2016年   69篇
  2012年   87篇
  2011年   280篇
  2010年   85篇
  2009年   59篇
  2008年   155篇
  2007年   398篇
  2006年   117篇
  2005年   116篇
  2004年   126篇
  2003年   188篇
  2002年   170篇
  2001年   157篇
  2000年   176篇
  1999年   104篇
  1992年   91篇
  1991年   72篇
  1990年   70篇
  1989年   64篇
  1988年   51篇
  1987年   70篇
  1986年   69篇
  1985年   128篇
  1984年   76篇
  1983年   68篇
  1982年   60篇
  1981年   61篇
  1980年   69篇
  1979年   131篇
  1978年   124篇
  1977年   133篇
  1976年   121篇
  1975年   134篇
  1974年   145篇
  1973年   110篇
  1972年   102篇
  1971年   149篇
  1970年   229篇
  1969年   151篇
  1968年   138篇
  1967年   163篇
  1966年   124篇
  1965年   82篇
  1959年   67篇
  1958年   82篇
  1957年   81篇
  1956年   52篇
  1954年   54篇
排序方式: 共有6504条查询结果,搜索用时 437 毫秒
221.
The activation of ubiquitin and related protein modifiers is catalysed by members of the E1 enzyme family that use ATP for the covalent self-attachment of the modifiers to a conserved cysteine. The Escherichia coli proteins MoeB and MoaD are involved in molybdenum cofactor (Moco) biosynthesis, an evolutionarily conserved pathway. The MoeB- and E1-catalysed reactions are mechanistically similar, and despite a lack of sequence similarity, MoaD and ubiquitin display the same fold including a conserved carboxy-terminal Gly-Gly motif. Similar to the E1 enzymes, MoeB activates the C terminus of MoaD to form an acyl-adenylate. Subsequently, a sulphurtransferase converts the MoaD acyl-adenylate to a thiocarboxylate that acts as the sulphur donor during Moco biosynthesis. These findings suggest that ubiquitin and E1 are derived from two ancestral genes closely related to moaD and moeB. Here we present the crystal structures of the MoeB-MoaD complex in its apo, ATP-bound, and MoaD-adenylate forms, and highlight the functional similarities between the MoeB- and E1-substrate complexes. These structures provide a molecular framework for understanding the activation of ubiquitin, Rub, SUMO and the sulphur incorporation step during Moco and thiamine biosynthesis.  相似文献   
222.
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.  相似文献   
223.
Lysozymes are antibacterial effectors of the innate immune system in animals that hydrolyze peptidoglycan. Bacteria have evolved protective mechanisms that contribute to lysozyme tolerance such as the production of lysozyme inhibitors, but only inhibitors of chicken (c-) and invertebrate (i-) type lysozyme have been identified. We here report the discovery of a novel Escherichia coli inhibitor specific for goose (g-) type lysozymes, which we designate PliG (periplasmic lysozyme inhibitor of g-type lysozyme). Although it does not inhibit c- or i-type lysozymes, PliG shares a structural sequence motif with the previously described PliI and MliC/PliC lysozyme inhibitor families, suggesting a common ancestry and mode of action. Deletion of pliG increased the sensitivity of E. coli to g-type lysozyme. The existence of inhibitors against all major types of animal lysozyme and their contribution to lysozyme tolerance suggest that lysozyme inhibitors may play a role in bacterial interactions with animal hosts.  相似文献   
224.
The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems—PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine—to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as GS that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.  相似文献   
225.
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.  相似文献   
226.
Blood vessel regression is an essential process for ensuring blood vessel networks function at optimal efficiency and for matching blood supply to the metabolic needs of tissues as they change over time. Angiogenesis is the major mechanism by which new blood vessels are produced, but the vessel growth associated with angiogenesis must be complemented by remodeling and maturation events including the removal of redundant vessel segments and cells to fashion the newly forming vasculature into an efficient, hierarchical network. This review will summarize recent findings on the role that endothelial cell apoptosis plays in vascular remodeling during angiogenesis and in vessel regression more generally.  相似文献   
227.
Vegetation characteristics of 15 sagebrush community types identified on the Humboldt National Forest, northeastern Nevada, are described. A total of 218 plant species were found over the 372 relatively undisturbed rangeland communities sampled. The dominant plant families encountered were the Asteraceae (45 taxa), Poaceae (32 taxa), Scrophulariaceae (14 taxa), and the Fabaceae (12 taxa). Average annual dry weight production of the community types ranged from about 400 kg/ha/yr on types with Artemisia nova as the dominant sagebrush species to 1,200 kg/ha/yr on some A. tridentata ssp. vaseyana community types. A general increase in species richness and vegetation plus litter ground cover was observed within community types as the dominant sagebrush species changed from A. nova to A. arbuscula to A. longiloba to A. tridentata spp. tridentata to A. tridentata ssp. vaseyana . Major differences in plant species production and constancy exist between the sagebrush community types studied.  相似文献   
228.
The diatom flora of selected sites in the Animas River Watershed, San Juan County, Colorado, was studied. Eighty diatom taxa were identified from 10 sites: 8 sites on the Animas River and 1 site each on the Cement and Cascade tributaries. The sample diatom abundance was dominated by Achnanthidium minutissimum , Encyonema silesiacum , Aulacoseira distans , Hannaea arcus , and Diatoma mesodon . The presence of teratologic specimens of Fragilaria and Achnanthidium in the samples indicated the possibility of metals contamination. Diatom diversity was low and Lange-Bertalot pollution index scores indicated little organic pollution evidenced from diatom composition. There was evidence that diatom composition at the sites was differentially affected by pH and possibly by the concentrations of Zn alone or in combination with Cd, Cu, and Fe.  相似文献   
229.
230.
V Q Nguyen  C Co  J J Li 《Nature》2001,411(6841):1068-1073
The stable propagation of genetic information requires that the entire genome of an organism be faithfully replicated once and only once each cell cycle. In eukaryotes, this replication is initiated at hundreds to thousands of replication origins distributed over the genome, each of which must be prohibited from re-initiating DNA replication within every cell cycle. How cells prevent re-initiation has been a long-standing question in cell biology. In several eukaryotes, cyclin-dependent kinases (CDKs) have been implicated in promoting the block to re-initiation, but exactly how they perform this function is unclear. Here we show that B-type CDKs in Saccharomyces cerevisiae prevent re-initiation through multiple overlapping mechanisms, including phosphorylation of the origin recognition complex (ORC), downregulation of Cdc6 activity, and nuclear exclusion of the Mcm2-7 complex. Only when all three inhibitory pathways are disrupted do origins re-initiate DNA replication in G2/M cells. These studies show that each of these three independent mechanisms of regulation is functionally important.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号