首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6396篇
  免费   76篇
  国内免费   32篇
系统科学   186篇
丛书文集   57篇
教育与普及   4篇
理论与方法论   106篇
现状及发展   3347篇
研究方法   264篇
综合类   2471篇
自然研究   69篇
  2018年   178篇
  2017年   221篇
  2016年   69篇
  2012年   87篇
  2011年   280篇
  2010年   85篇
  2009年   59篇
  2008年   155篇
  2007年   398篇
  2006年   117篇
  2005年   116篇
  2004年   126篇
  2003年   188篇
  2002年   170篇
  2001年   157篇
  2000年   176篇
  1999年   104篇
  1992年   91篇
  1991年   72篇
  1990年   70篇
  1989年   64篇
  1988年   51篇
  1987年   70篇
  1986年   69篇
  1985年   128篇
  1984年   76篇
  1983年   68篇
  1982年   60篇
  1981年   61篇
  1980年   69篇
  1979年   131篇
  1978年   124篇
  1977年   133篇
  1976年   121篇
  1975年   134篇
  1974年   145篇
  1973年   110篇
  1972年   102篇
  1971年   149篇
  1970年   229篇
  1969年   151篇
  1968年   138篇
  1967年   163篇
  1966年   124篇
  1965年   82篇
  1959年   67篇
  1958年   82篇
  1957年   81篇
  1956年   52篇
  1954年   54篇
排序方式: 共有6504条查询结果,搜索用时 296 毫秒
211.
The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn’s disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.  相似文献   
212.
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.  相似文献   
213.
The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.  相似文献   
214.
Accumulating evidence suggests that human γδ T cells act as non-classical T cells and contribute to both innate and adaptive immune responses in infections. Vγ2 Vδ2 T (also termed Vγ9 Vδ2 T) cells exist only in primates, and in humans represent a dominant circulating γδ T-cell subset. Primate Vγ2 Vδ2 T cells are the only γδ T cell subset capable of recognizing microbial phosphoantigen. Since nonhuman primate Vγ2 Vδ2 T cells resemble their human counterparts, in-depth studies have been undertaken in macaques to understand the biology and function of human Vγ2 Vδ2 T cells. This article reviews the recent progress for immune biology of Vγ2 Vδ2 T cells in infections.  相似文献   
215.
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.  相似文献   
216.
Molecular mechanisms triggered by high dietary beta-carotene (BC) intake in lung are largely unknown. We performed microarray gene expression analysis on lung tissue of BC supplemented beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1 /) mice, which are—like humans—able to accumulate BC. Our main observation was that the genes were regulated in an opposite direction in male and female Bcmo1 / mice by BC. The steroid biosynthetic pathway was overrepresented in BC-supplemented male Bcmo1 / mice. Testosterone levels were higher after BC supplementation only in Bcmo1 / mice, which had, unlike wild-type (Bcmo1 +/+) mice, large variations. We hypothesize that BC possibly affects hormone synthesis or metabolism. Since sex hormones influence lung cancer risk, these data might contribute to an explanation for the previously found increased lung cancer risk after BC supplementation (ATBC and CARET studies). Moreover, effects of BC may depend on the presence of frequent human BCMO1 polymorphisms, since these effects were not found in wild-type mice.  相似文献   
217.
The skin is our primary shield against microbial pathogens and has evolved innate and adaptive strategies to enhance immunity in response to injury or microbial insult. The study of antimicrobial peptide (AMP) production in mammalian skin has revealed several of the elegant strategies that AMPs use to prevent infection. AMPs are inducible by both infection and injury and protect the host by directly killing pathogens and/or acting as multifunctional effector molecules that trigger cellular responses to aid in the anti-infective and repair response. Depending on the specific AMP, these molecules can influence cytokine production, cell migration, cell proliferation, differentiation, angiogenesis and wound healing. Abnormal production of AMPs has been associated with the pathogenesis of several cutaneous diseases and plays a role in determining a patient’s susceptibility to pathogens. This review will discuss current research on the regulation and function of AMPs in the skin and in skin disorders.  相似文献   
218.
219.
Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.  相似文献   
220.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号