首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7369篇
  免费   631篇
  国内免费   21篇
系统科学   1100篇
丛书文集   2篇
教育与普及   11篇
理论与方法论   314篇
现状及发展   1087篇
研究方法   322篇
综合类   5076篇
自然研究   109篇
  2021年   6篇
  2020年   6篇
  2019年   4篇
  2018年   730篇
  2017年   739篇
  2016年   448篇
  2015年   46篇
  2014年   24篇
  2013年   29篇
  2012年   435篇
  2011年   1244篇
  2010年   886篇
  2009年   471篇
  2008年   641篇
  2007年   964篇
  2006年   168篇
  2005年   220篇
  2004年   284篇
  2003年   299篇
  2002年   221篇
  2001年   12篇
  2000年   9篇
  1999年   14篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1985年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1967年   4篇
排序方式: 共有8021条查询结果,搜索用时 46 毫秒
171.
The risk classification of BBS posts is important to the evaluation of societal risk level within a period. Using the posts collected from Tianya forum as the data source, the authors adopted the societal risk indicators from socio psychology, and conduct document-level multiple societal risk classification of BBS posts. To effectively capture the semantics and word order of documents, a shallow neural network as Paragraph Vector is applied to realize the distributed vector representations of the posts in the vector space. Based on the document vectors, the authors apply one classification method KNN to identify the societal risk category of the posts. The experimental results reveal that paragraph vector in document-level societal risk classification achieves much faster training speed and at least 10% improvements of F-measures than Bag-of-Words. Furthermore, the performance of paragraph vector is also superior to edit distance and Lucene-based search method. The present work is the first attempt of combining document embedding method with socio psychology research results to public opinions area.  相似文献   
172.
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte–pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.  相似文献   
173.
The paper explores cinematic films as a pedagogical tool to promote critical thinking and student discussions in a doctoral-level learning, design, and technology seminar course at a major U.S. research university. These discussions focused on systemic change and systemic thinking concepts. The authors offer evidence from the literature that supports films’ power as a visual metaphor and neurocognitive stimulator to promote development of new perspectives in graduate students on case studies through articulation, reflection, and explanation of their thought processes on change and diffusion of innovation. There are theoretical, political, social, and technological issues that create tensions during any systemic change effort. The goal of using film in this seminar is to equip students with the requisite skills, theoretical frameworks, and interpersonal experiences needed to address these issues within organizations and communities. The change expected from systemic thinking is for students to think more deeply about the interconnectedness of systems and the importance of bottom-up change efforts that consider the perspective of all stakeholders.  相似文献   
174.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   
175.
176.
Interferon-alpha (IFN-α) is a potent anti-viral cytokine, critical to the host immune response against viruses. IFN-α is first produced upon viral detection by pathogen recognition receptors. Following its expression, IFN-α embarks upon a complex downstream signalling cascade called the JAK/STAT pathway. This signalling pathway results in the expression of hundreds of effector genes known as interferon stimulated genes (ISGs). These genes are the basis for an elaborate effector mechanism and ultimately, the clearance of viral infection. ISGs mark an elegant mechanism of anti-viral host defence that warrants renewed research focus in our global efforts to treat existing and emerging viruses. By understanding the mechanistic role of individual ISGs we anticipate the discovery of a new “treasure trove” of anti-viral mediators that may pave the way for more effective, targeted and less toxic anti-viral therapies. Therefore, with the aim of highlighting the value of the innate type 1 IFN response in our battle against viral infection, this review outlines both historic and recent advances in understanding the IFN-α JAK/STAT pathway, with a focus on new research discoveries relating to specific ISGs and their potential role in curing existing and future emergent viral infections.  相似文献   
177.
Kynurenine pathway (KP) is the primary path of tryptophan (Trp) catabolism in most mammalian cells. The KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and 3-hydroxyanthranilic acid (3-HAA). Increased catabolite concentrations in serum are associated with several cardiovascular diseases (CVD), including heart disease, atherosclerosis, and endothelial dysfunction, as well as their risk factors, including hypertension, diabetes, obesity, and aging. The first catabolic step in KP is primarily controlled by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Following this first step, the KP has two major branches, one branch is mediated by kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU) and is responsible for the formation of 3-HK, 3-HAA, and quinolinic acid (QA); and another branch is controlled by kynurenine amino-transferase (KAT), which generates KA. Uncontrolled Trp catabolism has been demonstrated in distinct CVD, thus, understanding the underlying mechanisms by which regulates KP enzyme expression and activity is paramount. This review highlights the recent advances on the effect of KP enzyme expression and activity in different tissues on the pathological mechanisms of specific CVD, KP is an inflammatory sensor and modulator in the cardiovascular system, and KP catabolites act as the potential biomarkers for CVD initiation and progression. Moreover, the biochemical features of critical KP enzymes and principles of enzyme inhibitor development are briefly summarized, as well as the therapeutic potential of KP enzyme inhibitors against CVD is briefly discussed.  相似文献   
178.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   
179.
Aptamers are small single-stranded DNA or RNA oligonucleotide fragments or small peptides, which can bind to targets by high affinity and specificity. Because aptamers are specific, non-immunogenic and non-toxic, they are ideal materials for clinical applications. Neurodegenerative disorders are ravaging the lives of patients. Even though the mechanism of these diseases is still elusive, they are mainly characterized by the accumulation of misfolded proteins in the central nervous system. So it is essential to develop potential measures to slow down or prevent the onset of these diseases. With the advancements of the technologies, aptamers have opened up new areas in this research field. Aptamers could bind with these related target proteins to interrupt their accumulation, subsequently blocking or preventing the process of neurodegenerative diseases. This review presents recent advances in the aptamer generation and its merits and limitations, with emphasis on its applications in neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, transmissible spongiform encephalopathy, Huntington’s disease and multiple sclerosis.  相似文献   
180.
The positive impacts of managing projects as a portfolio are quantified by comparing the value of the integrated risk of a project portfolio and the aggregation of single project risks implemented separately. Firstly, the integrated risk is defined by proposing risky events based on set theory. Secondly, as projects interact with each other in a project portfolio, the integrated risk is evaluated by using a Bayesian network structure learning algorithm to construct an interdependent network of risks. Finally, the integrated risk of a practical case is assessed using this method, and the results show that the proposed method is an effective tool for calculating the extent of risk reduction of implementing a project portfolio and identifying the most risky project, so as to assist companies in making comprehensive decisions in the phase of portfolio selection and portfolio controlling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号