首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   4篇
系统科学   8篇
理论与方法论   1篇
现状及发展   31篇
研究方法   17篇
综合类   57篇
自然研究   11篇
  2020年   1篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   11篇
  2011年   15篇
  2010年   2篇
  2009年   2篇
  2008年   11篇
  2007年   10篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   8篇
  2002年   1篇
  1998年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
71.
The outbreak of Dutch elm disease in the 1970s ravaged European elm populations, killing more than 25 million trees in Britain alone; the greatest impact was on Ulmus procera, otherwise known as the English elm. Here we use molecular and historical information to show that this elm derives from a single clone that the Romans transported from Italy to the Iberian peninsula, and from there to Britain, for the purpose of supporting and training vines. Its highly efficient vegetative reproduction and its inability to set seeds have preserved this clone unaltered for 2,000 years as the core of the English elm population--and the preponderance of this susceptible variety may have favoured a rapid spread of the disease.  相似文献   
72.
Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 microm gap between epitaxial electrodes of the highly spin polarized manganite La(0.7)Sr(0.3)MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.  相似文献   
73.
We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 11 unrelated subjects. Notably, only two breakpoint junctions were generated during each rearrangement formation. All the complex rearrangement products share a common genomic organization, duplication-inverted triplication-duplication (DUP-TRP/INV-DUP), in which the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by >300 kb, a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat-mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology-driven events, via inverted repeats, and microhomologous or nonhomologous events.  相似文献   
74.
75.
We mapped a high-penetrance gene (CRAC1; also known as HMPS) associated with colorectal cancer (CRC) in the Ashkenazi population to a 0.6-Mb region on chromosome 15 containing SCG5 (also known as SGNE1), GREM1 and FMN1. We hypothesized that the CRAC1 locus harbored low-penetrance variants that increased CRC risk in the general population. In a large series of colorectal cancer cases and controls, SNPs near GREM1 and SCG5 were strongly associated with increased CRC risk (for rs4779584, P = 4.44 x 10(-14)).  相似文献   
76.
Naturally occurring variation in gene copy number is increasingly recognized as a heritable source of susceptibility to genetically complex diseases. Here we report strong association between FCGR3B copy number and risk of systemic lupus erythematosus (P = 2.7 x 10(-8)), microscopic polyangiitis (P = 2.9 x 10(-4)) and Wegener's granulomatosis in two independent cohorts from the UK (P = 3 x 10(-3)) and France (P = 1.1 x 10(-4)). We did not observe this association in the organ-specific Graves' disease or Addison's disease. Our findings suggest that low FCGR3B copy number, and in particular complete FCGR3B deficiency, has a key role in the development of systemic autoimmunity.  相似文献   
77.
78.
79.
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号