首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3449篇
  免费   89篇
  国内免费   17篇
系统科学   122篇
丛书文集   5篇
教育与普及   5篇
理论与方法论   36篇
现状及发展   1062篇
研究方法   61篇
综合类   2252篇
自然研究   12篇
  2024年   17篇
  2023年   27篇
  2020年   14篇
  2017年   16篇
  2016年   31篇
  2015年   59篇
  2014年   30篇
  2013年   27篇
  2012年   161篇
  2011年   175篇
  2010年   13篇
  2008年   23篇
  2007年   22篇
  2006年   38篇
  2005年   214篇
  2004年   524篇
  2003年   481篇
  2002年   173篇
  2001年   98篇
  2000年   154篇
  1999年   82篇
  1992年   39篇
  1991年   28篇
  1990年   37篇
  1989年   37篇
  1988年   35篇
  1987年   18篇
  1986年   26篇
  1985年   38篇
  1984年   28篇
  1983年   24篇
  1982年   15篇
  1981年   12篇
  1980年   17篇
  1979年   61篇
  1978年   39篇
  1977年   31篇
  1976年   30篇
  1975年   40篇
  1974年   59篇
  1973年   51篇
  1972年   52篇
  1971年   74篇
  1970年   58篇
  1969年   69篇
  1968年   59篇
  1967年   42篇
  1966年   56篇
  1965年   41篇
  1964年   11篇
排序方式: 共有3555条查询结果,搜索用时 31 毫秒
61.
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.  相似文献   
62.
Protein intrinsic disorder as a flexible armor and a weapon of HIV-1   总被引:2,自引:2,他引:0  
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.  相似文献   
63.
Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.  相似文献   
64.
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.  相似文献   
65.
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.  相似文献   
66.
67.
68.
Melanopsin-based phototransduction is involved in non-image forming light responses including circadian entrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep in vertebrates. Given that the functions of melanopsin involve the measurement and summation of total environmental luminance, there would appear to be no need for the rapid deactivation typical of other G-protein coupled receptors. In this study, however, we demonstrate that heterologously expressed mouse melanopsin is phosphorylated in a light-dependent manner, and that this phosphorylation is involved in regulating the rate of G-protein activation and the lifetime of melanopsin’s active state. Furthermore, we provide evidence for light-dependent phosphorylation of melanopsin in the mouse retina using an in situ proximity ligation assay. Finally, we demonstrate that melanopsin preferentially interacts with the GRK2/3 family of G-protein coupled receptor kinases through co-immunoprecipitation assays. Based on the complement of G-protein receptor kinases present in the melanopsin-expressing retinal ganglion cells, GRK2 emerges as the best candidate for melanopsin’s cognate GRK.  相似文献   
69.
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.  相似文献   
70.
Microautophagy: lesser-known self-eating   总被引:1,自引:1,他引:0  
Microautophagy, the non-selective lysosomal degradative process, involves direct engulfment of cytoplasmic cargo at a boundary membrane by autophagic tubes, which mediate both invagination and vesicle scission into the lumen. With its constitutive characteristics, microautophagy of soluble substrates can be induced by nitrogen starvation or rapamycin via regulatory signaling complex pathways. The maintenance of organellar size, membrane homeostasis, and cell survival under nitrogen restriction are the main functions of microautophagy. In addition, microautophagy is coordinated with and complements macroautophagy, chaperone-mediated autophagy, and other self-eating pathways. Three forms of selective microautophagy, including micropexophagy, piecemeal microautophagy of the nucleus, and micromitophagy, share common ground with microautophagy to some degree. As the accumulation of experimental data, the precise mechanisms that govern microautophagy are becoming more appreciated. Here, we review the microautophagic molecular machinery, its physiological functions, and relevance to human diseases, especially in diseases involving multivesicular bodies and multivesicular lysosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号