首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
系统科学   2篇
现状及发展   5篇
研究方法   1篇
综合类   15篇
  2021年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有23条查询结果,搜索用时 38 毫秒
21.
An active DNA transposon family in rice   总被引:40,自引:0,他引:40  
Jiang N  Bao Z  Zhang X  Hirochika H  Eddy SR  McCouch SR  Wessler SR 《Nature》2003,421(6919):163-167
The publication of draft sequences for the two subspecies of Oryza sativa (rice), japonica (cv. Nipponbare) and indica (cv. 93-11), provides a unique opportunity to study the dynamics of transposable elements in this important crop plant. Here we report the use of these sequences in a computational approach to identify the first active DNA transposons from rice and the first active miniature inverted-repeat transposable element (MITE) from any organism. A sequence classified as a Tourist-like MITE of 430 base pairs, called miniature Ping (mPing), was present in about 70 copies in Nipponbare and in about 14 copies in 93-11. These mPing elements, which are all nearly identical, transpose actively in an indica cell-culture line. Database searches identified a family of related transposase-encoding elements (called Pong), which also transpose actively in the same cells. Virtually all new insertions of mPing and Pong elements were into low-copy regions of the rice genome. Since the domestication of rice mPing MITEs have been amplified preferentially in cultivars adapted to environmental extremes-a situation that is reminiscent of the genomic shock theory for transposon activation.  相似文献   
22.
Summary Microsurgical reversal of a segment of rabbit proximal tubal isthmus has been followed by normal pregnancy in the first two animals to undergo the procedure. Establishment of pregnancy despite radical modification of the oviduct furnishes the opportunity to gain new insights into the mechanisms controlling tubal ovum transport and emphasizes the evolving feasibility and importance of tuboplastic microsurgery both as a research tool and clinical procedure.This study was partly supported by an N.I.H. Institutional Research Grant.Supported by the Rockefeller Foundation.  相似文献   
23.
Kho C  Lee A  Jeong D  Oh JG  Chaanine AH  Kizana E  Park WJ  Hajjar RJ 《Nature》2011,477(7366):601-605
The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca(2+) re-uptake during excitation-contraction coupling. Impaired Ca(2+) uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca(2+) decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号