首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   5篇
  国内免费   8篇
系统科学   9篇
丛书文集   1篇
教育与普及   1篇
理论与方法论   9篇
现状及发展   113篇
研究方法   71篇
综合类   351篇
自然研究   30篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   12篇
  2012年   47篇
  2011年   76篇
  2010年   13篇
  2009年   6篇
  2008年   36篇
  2007年   38篇
  2006年   46篇
  2005年   43篇
  2004年   34篇
  2003年   24篇
  2002年   27篇
  2001年   8篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1991年   2篇
  1990年   5篇
  1989年   7篇
  1987年   9篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1975年   4篇
  1974年   5篇
  1973年   7篇
  1972年   7篇
  1971年   4篇
  1970年   3篇
  1968年   2篇
  1966年   9篇
  1965年   5篇
  1956年   1篇
  1945年   1篇
排序方式: 共有585条查询结果,搜索用时 359 毫秒
511.
512.
Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.  相似文献   
513.
Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme's function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36?? resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.  相似文献   
514.
515.
516.
Recent advances in whole-genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only ~100?picograms of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants were assembled into long haplotype contigs. Removal of false positive single nucleotide variants not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10?megabases. Cost-effective and accurate genome sequencing and haplotyping from 10-20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications.  相似文献   
517.
Resveratrol improves health and survival of mice on a high-calorie diet   总被引:3,自引:0,他引:3  
Resveratrol (3,5,4'-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.  相似文献   
518.
Isolation of a novel acidiphilic methanogen from an acidic peat bog   总被引:2,自引:0,他引:2  
Acidic peatlands are among the largest natural sources of atmospheric methane and harbour a large diversity of methanogenic Archaea. Despite the ubiquity of methanogens in these peatlands, indigenous methanogens capable of growth at acidic pH values have resisted culture and isolation; these recalcitrant methanogens include members of an uncultured family-level clade in the Methanomicrobiales prevalent in many acidic peat bogs in the Northern Hemisphere. However, we recently succeeded in obtaining a mixed enrichment culture of a member of this clade. Here we describe its isolation and initial characterization. We demonstrate that the optimum pH for methanogenesis by this organism is lower than that of any previously described methanogen.  相似文献   
519.
Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of beta-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.  相似文献   
520.
Lorenz IC  Marcotrigiano J  Dentzer TG  Rice CM 《Nature》2006,442(7104):831-835
Hepatitis C virus is a major global health problem affecting an estimated 170 million people worldwide. Chronic infection is common and can lead to cirrhosis and liver cancer. There is no vaccine available and current therapies have met with limited success. The viral RNA genome encodes a polyprotein that includes two proteases essential for virus replication. The NS2-3 protease mediates a single cleavage at the NS2/NS3 junction, whereas the NS3-4A protease cleaves at four downstream sites in the polyprotein. NS3-4A is characterized as a serine protease with a chymotrypsin-like fold, but the enzymatic mechanism of the NS2-3 protease remains unresolved. Here we report the crystal structure of the catalytic domain of the NS2-3 protease at 2.3 A resolution. The structure reveals a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer, and the nucleophilic cysteine by the other. The carboxy-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. Proteolysis through formation of a composite active site occurs in the context of the viral polyprotein expressed in mammalian cells. These features offer unexpected insights into polyprotein processing by hepatitis C virus and new opportunities for antiviral drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号