首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53753篇
  免费   122篇
  国内免费   147篇
系统科学   405篇
丛书文集   1158篇
教育与普及   140篇
理论与方法论   284篇
现状及发展   23403篇
研究方法   1919篇
综合类   25797篇
自然研究   916篇
  2013年   387篇
  2012年   677篇
  2011年   1611篇
  2010年   304篇
  2008年   866篇
  2007年   950篇
  2006年   994篇
  2005年   971篇
  2004年   932篇
  2003年   966篇
  2002年   910篇
  2001年   1656篇
  2000年   1518篇
  1999年   944篇
  1992年   921篇
  1991年   779篇
  1990年   814篇
  1989年   785篇
  1988年   794篇
  1987年   810篇
  1986年   812篇
  1985年   975篇
  1984年   806篇
  1983年   692篇
  1982年   592篇
  1981年   592篇
  1980年   759篇
  1979年   1650篇
  1978年   1394篇
  1977年   1354篇
  1976年   1026篇
  1975年   1163篇
  1974年   1608篇
  1973年   1392篇
  1972年   1441篇
  1971年   1723篇
  1970年   2240篇
  1969年   1696篇
  1968年   1625篇
  1967年   1639篇
  1966年   1474篇
  1965年   1051篇
  1964年   273篇
  1959年   643篇
  1958年   994篇
  1957年   766篇
  1956年   640篇
  1955年   566篇
  1954年   631篇
  1948年   386篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
901.
902.
Isoprenoids are synthesized in all living organisms and are incorporated into diverse classes of end-products that participate in a multitude of cellular processes relating to cell growth, differentiation, cytoskeletal function and vesicle trafficking. In humans, the non-sterol isoprenoids, farnesyl pyrophosphate and geranylgeranyl-pyrophosphate, are synthesized via the mevalonate pathway and are covalently added to members of the small G protein superfamily. Isoprenylated proteins have key roles in membrane attachment and protein functionality, have been shown to have a central role in some cancers and are likely also to be involved in the pathogenesis and progression of atherosclerosis and Alzheimer disease. This review details current knowledge on the biosynthesis of isoprenoids, their incorporation into proteins by the process known as prenylation and the complex regulatory network that controls these proteins. An improved understanding of these processe is likely to lead to the development of novel therapies that will have important implications for human health and disease. Received 5 July 2005; received after revision 17 October 2005; accepted 22 October 2005  相似文献   
903.
The thyroid hormone plays a fundamental role in the development, growth, and metabolic homeostasis in all vertebrates by affecting the expression of different sets of genes. A group of thioredoxin fold-containing selenoproteins known as deiodinases control thyroid hormone action by activating or inactivating the precursor molecule thyroxine that is secreted by the thyroid gland. These pathways ensure regulation of the availability of the biologically active molecule T3, which occurs in a time-and tissue-specific fashion. In addition, because cells and plasma are in equilibrium and deiodination affects central thyroid hormone regulation, these local deiodinase-mediated events can also affect systemic thyroid hormone economy, such as in the case of non-thyroidal illness. Heightened interest in the field has been generated following the discovery that the deiodinases can be a component in both the Sonic hedgehog signaling pathway and the TGR-5 signaling cascade, a G-protein-coupled receptor for bile acids. These new mechanisms involved in deiodinase regulation indicate that local thyroid hormone activation and inactivation play a much broader role than previously thought. Received 29 August 2007; received after revision 11 October 2007; accepted 16 October 2007  相似文献   
904.
Specific protein-protein interactions are essential for cellular functions. Experimentally determined three-dimensional structures of protein-protein complexes offer the possibility to characterize binding interfaces in terms of size, shape and packing density. Comparison with crystal-packing interfaces representing nonspecific protein-protein contacts gives insight into how specific binding differs from nonspecific low-affinity binding. An overview is given on empirical structural rules for specific protein-protein recognition derived from known complex structures. Although single parameters such as interface size, shape or surface complementary show clear trends for different interface types, each parameter alone is insufficient to fully distinguish between specific versus crystal-packing contacts. A combination of interface parameters is, however, well suited to characterize a specific interface. This knowledge provides us with the essential ingredients that make up a specific protein recognition site. It is also of great value for the prediction of protein binding sites and for the evaluation of predicted complex structures. Received 1 October 2007; received after revision 9 November 2007; accepted 9 November 2007  相似文献   
905.
This review discusses the state-of-the-art in molecular research on the most prominent and widely applied lantibiotic, i.e., nisin. The developments in understanding its complex biosynthesis and mode of action are highlighted. Moreover, novel applications arising from engineering either nisin itself, or from the construction of totally novel dehydrated and/or lanthionine-containing peptides with desired bioactivities are described. Several challenges still exist in understanding the immunity system and the unique multiple reactions occurring on a single substrate molecule, carried out by the dehydratase NisB and the cyclization enzyme NisC. The recent elucidation of the 3-D structure of NisC forms the exciting beginning of further 3-D-structure determinations of the other biosynthetic enzymes, transporters and immunity proteins. Advances in achieving in vitro activities of lanthionine-forming enzymes will greatly enhance our understanding of the molecular characteristics of the biosynthesis process, opening up new avenues for developing unique and novel biocatalytic processes. Received 9 April 2007; received after revision 31 August 2007; accepted 28 September 2007  相似文献   
906.
Many notions regarding the function, structure and regulation of cholera toxin expression have remained essentially unaltered in the last 15 years. At the same time, recent findings have generated additional perspectives. For example, the cholera toxin genes are now known to be carried by a non-lytic bacteriophage, a previously unsuspected condition. Understanding of how the expression of cholera toxin genes is controlled by the bacterium at the molecular level has advanced significantly and relationships with cell-density-associated (quorum-sensing) responses have recently been discovered. Regarding the cell intoxication process, the mode of entry and intracellular transport of cholera toxin are becoming clearer. In the immunological field, the strong oral immunogenicity of the non-toxic B subunit of cholera toxin (CTB) has been exploited in the development of a now widely licensed oral cholera vaccine. Additionally, CTB has been shown to induce tolerance against co-administered (linked) foreign antigens in some autoimmune and allergic diseases. Received 25 October 2007; accepted 12 December 2007  相似文献   
907.
Human eosinophil cationic protein (ECP)/ ribonuclease 3 (RNase 3) is a protein secreted from the secondary granules of activated eosinophils. Specific properties of ECP contribute to its cytotoxic activities associated with defense mechanisms. In this work the ECP cytotoxic activity on eukaryotic cell lines is analyzed. The ECP effects begin with its binding and aggregation to the cell surface, altering the cell membrane permeability and modifying the cell ionic equilibrium. No internalization of the protein is observed. These signals induce cell-specific morphological and biochemical changes such as chromatin condensation, reversion of membrane asymmetry, reactive oxygen species production and activation of caspase-3-like activity and, eventually, cell death. However, the ribonuclease activity component of ECP is not involved in this process as no RNA degradation is observed. In summary, the cytotoxic effect of ECP is attained through a mechanism different from that of other cytotoxic RNases and may be related with the ECP accumulation associated with the inflammatory processes, in which eosinophils are present. Received 26 October 2007; accepted 23 November 2007  相似文献   
908.
909.
Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved. Received 7 November 2007; received after revision 19 December 2007; accepted 21 December 2007 O. Cohausz, C. Blenn: These two authors contributed equally to this work.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号