首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   9篇
  国内免费   1篇
系统科学   7篇
理论与方法论   5篇
现状及发展   55篇
研究方法   35篇
综合类   137篇
自然研究   17篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   8篇
  2014年   5篇
  2013年   16篇
  2012年   21篇
  2011年   39篇
  2010年   7篇
  2009年   3篇
  2008年   17篇
  2007年   15篇
  2006年   20篇
  2005年   23篇
  2004年   20篇
  2003年   10篇
  2002年   12篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1990年   1篇
排序方式: 共有256条查询结果,搜索用时 218 毫秒
1.
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole’s protective actions. Melatonin’s mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.  相似文献   
2.
ABSTRACT

This study is primarily directed to the most poorly known species of the genus Trichomycterus, comprising five nominal species (T. florensis, T. immaculatus, T. nigricans, T. paquequerensis and T. santaeritae) endemic to south-eastern Brazil. One of them, T. nigricans, is the type species of the genus, involved in taxonomic problems for over 150 years. A detailed historical review, accompanied by examination of type specimens and recent collections, revealed that the correct type locality of T. nigricans is in the vicinity of Rio de Janeiro, not Santa Catarina as commonly appears in the literature; specimens previously misidentified as T. nigricans from Santa Catarina belong to a possibly undescribed species of the genus Cambeva; T. paquequerensis is a synonym of T. immaculatus, and T. florensis is a synonym of T. santaeritae; and the hypothesis that T. santaeritae is closely related to the Amazon Sarcoglanidinae is refuted. The three valid species are redescribed. These species are members of a clade also including T. caipora that is highly supported by molecular data, diagnosed by a pronounced posterior maxillary process and caudal fin emarginate at least in larger specimens. A subclade comprising T. caipora, T. nigricans and T. santaeritae is diagnosed by a long maxilla and a bifid anterior extremity of hypobranchial 3.  相似文献   
3.
The interactions between plants and their animal pollinators and seed dispersers have moulded much of Earth's biodiversity. Recently, it has been shown that these mutually beneficial interactions form complex networks with a well-defined architecture that may contribute to biodiversity persistence. Little is known, however, about which ecological and evolutionary processes generate these network patterns. Here we use phylogenetic methods to show that the phylogenetic relationships of species predict the number of interactions they exhibit in more than one-third of the networks, and the identity of the species with which they interact in about half of the networks. As a consequence of the phylogenetic effects on interaction patterns, simulated extinction events tend to trigger coextinction cascades of related species. This results in a non-random pruning of the evolutionary tree and a more pronounced loss of taxonomic diversity than expected in the absence of a phylogenetic signal. Our results emphasize how the simultaneous consideration of phylogenetic information and network architecture can contribute to our understanding of the structure and fate of species-rich communities.  相似文献   
4.
Nearly two-dimensional (2D) metallic systems formed in charge inversion layers and artificial layered materials permit the existence of low-energy collective excitations, called 2D plasmons, which are not found in a three-dimensional (3D) metal. These excitations have caused considerable interest because their low energy allows them to participate in many dynamical processes involving electrons and phonons, and because they might mediate the formation of Cooper pairs in high-transition-temperature superconductors. Metals often support electronic states that are confined to the surface, forming a nearly 2D electron-density layer. However, it was argued that these systems could not support low-energy collective excitations because they would be screened out by the underlying bulk electrons. Rather, metallic surfaces should support only conventional surface plasmons-higher-energy modes that depend only on the electron density. Surface plasmons have important applications in microscopy and sub-wavelength optics, but have no relevance to the low-energy dynamics. Here we show that, in contrast to expectations, a low-energy collective excitation mode can be found on bare metal surfaces. The mode has an acoustic (linear) dispersion, different to the dependence of a 2D plasmon, and was observed on Be(0001) using angle-resolved electron energy loss spectroscopy. First-principles calculations show that it is caused by the coexistence of a partially occupied quasi-2D surface-state band with the underlying 3D bulk electron continuum and also that the non-local character of the dielectric function prevents it from being screened out by the 3D states. The acoustic plasmon reported here has a very general character and should be present on many metal surfaces. Furthermore, its acoustic dispersion allows the confinement of light on small surface areas and in a broad frequency range, which is relevant for nano-optics and photonics applications.  相似文献   
5.
Qu X  Wen JD  Lancaster L  Noller HF  Bustamante C  Tinoco I 《Nature》2011,475(7354):118-121
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.  相似文献   
6.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
7.
The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48?Gyr ago, but within the 160?Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48?Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.  相似文献   
8.
Wicks C  de la Llera JC  Lara LE  Lowenstern J 《Nature》2011,478(7369):374-377
Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2?May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5?km depth in less than 4?hours (ref.?1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.  相似文献   
9.
Acromyrmex balzani is a grass-cutting ant species frequently found in Cerrado areas. However, little is known about the architecture of the polydomous nests of this ant. Fifteen A. balzani nests located in a cerrado region in Botucatu, São Paulo, Brazil, were studied. The polydomous nests were studied in three ways. First, we investigated the architecture in nests moulded with cement and without moulding. Second, we performed an aggressiveness test among workers in different subnests and nests. Third, we excavated the nest and collected the colony to measure the population, verifying the existence or not of a queen in all nests. A cement mould was made of seven nests to permit better visualization of internal structures such as chambers and tunnels. Eight nests were excavated without moulding and white neutral talc was used to highlight the parts of the nests. After excavation, the depth and dimensions (length, width and height) of the chambers were measured. The results showed that the nests had a single entrance hole whose structure consisted of straw and other plant residues in winter. Mounds of loose soil, if present, were found 6–48 cm from the hole. The number of chambers containing fungus ranged from one to five, with the first being found a few centimetres beneath the ground surface (4 cm) and the last up to a maximum depth of 160 cm. The length of the tunnels ranged from 12 to 28 cm. These tunnels were built in a vertical or inclined position, leading to the chambers. No waste chambers were found, with the waste being deposited externally. Additionally, the polydomous nests contained one to eight subnests. In the aggressiveness test, when concolonial workers were confronted, no aggressiveness was observed. In contrast, when allocolonial workers were confronted, there was a high incidence of aggression among them. Excavation of polydomous nests showed only one queen for each polydomous nest, i.e. subnests with a single queen. Our study contributes to a better understanding of the so far unknown nest architecture of the polydomous grass-cutting ant A. balzani.  相似文献   
10.
Primary cilia are microtubule-based organelles that project from the surface of nearly every animal cell. Although important functions of primary cilia in morphogenesis and tissue homeostasis have been identified, the mechanisms that control the formation of primary cilia are not understood. Here we characterize a zebrafish gene, termed duboraya (dub), that is essential for ciliogenesis. Knockdown of dub in zebrafish embryos results in both defects in primary cilia formation in Kupffer's vesicle and randomization of left-right organ asymmetries. We show that, at the molecular level, the function of dub in ciliogenesis is regulated by phosphorylation, which in turn depends on Frizzled-2-mediated noncanonical Wnt signaling. We also provide evidence that, at the cellular level, dub function is essential for actin organization in the cells lining Kupffer's vesicle. Taken together, our findings identify a molecular factor that links noncanonical Wnt signaling with the control of left-right axis specification, and provide an entry point for analyzing the mechanisms that regulate primary cilia formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号