首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   7篇
  国内免费   1篇
系统科学   5篇
理论与方法论   2篇
现状及发展   35篇
研究方法   23篇
综合类   104篇
自然研究   12篇
  2021年   1篇
  2020年   4篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   25篇
  2010年   5篇
  2008年   14篇
  2007年   9篇
  2006年   14篇
  2005年   20篇
  2004年   16篇
  2003年   8篇
  2002年   9篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1973年   1篇
  1969年   2篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
51.
Ten years of tension: single-molecule DNA mechanics   总被引:24,自引:0,他引:24  
Bustamante C  Bryant Z  Smith SB 《Nature》2003,421(6921):423-427
The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.  相似文献   
52.
53.
Loss of collagenase-2 confers increased skin tumor susceptibility to male mice   总被引:16,自引:0,他引:16  
Matrix metalloproteinases (MMPs) have fundamental roles in tumor progression, but most clinical trials with MMP inhibitors have not shown improvements in individuals with cancer. This may be partly because broad-range inhibitors also reduce host-protective antitumor properties of individual MMPs. We generated mice deficient in collagenase-2 (Mmp8), an MMP mainly produced by neutrophils in inflammatory reactions and detected in some malignant tumors. Loss of Mmp8 did not cause abnormalities during embryonic development or in adult mice. Contrary to previous studies with MMP-deficient mice, however, the absence of Mmp8 strongly increased the incidence of skin tumors in male Mmp8(-/-)mice. Female Mmp8(-/-)mice whose ovaries were removed or were treated with tamoxifen were also more susceptible to tumors compared with wild-type mice. Bone marrow transplantation experiments confirmed that Mmp8 supplied by neutrophils was sufficient to restore the natural protection against tumor development mediated by this protease in male mice. Histopathological analysis showed that mutant mice had abnormalities in the inflammatory response induced by carcinogens. Our study identifies a paradoxical protective role for Mmp8 in cancer and provides a genetic model to evaluate the molecular basis of gender differences in cancer susceptibility.  相似文献   
54.
The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer’s disease and Down’s syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ?snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ?snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ?snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.  相似文献   
55.
Misfolded F508del-CFTR, the main molecular cause of the recessive disorder cystic fibrosis, is recognized by the endoplasmic reticulum (ER) quality control (ERQC) resulting in its retention and early degradation. The ERQC mechanisms rely mainly on molecular chaperones and on sorting motifs, whose presence and exposure determine CFTR retention or exit through the secretory pathway. Arginine-framed tripeptides (AFTs) are ER retention motifs shown to modulate CFTR retention. However, the interactions and regulatory pathways involved in this process are still largely unknown. Here, we used proteomic interaction profiling and global bioinformatic analysis to identify factors that interact differentially with F508del-CFTR and F508del-CFTR without AFTs (F508del-4RK-CFTR) as putative regulators of this specific ERQC checkpoint. Using LC–MS/MS, we identified kinesin family member C1 (KIFC1) as a stronger interactor with F508del-CFTR versus F508del-4RK-CFTR. We further validated this interaction showing that decreasing KIFC1 levels or activity stabilizes the immature form of F508del-CFTR by reducing its degradation. We conclude that the current approach is able to identify novel putative therapeutic targets that can be ultimately used to the benefit of CF patients.  相似文献   
56.
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.  相似文献   
57.
The eighth annual Human Genome Variation Meeting was held in September 2006 in the Hong Kong Special Administrative Region, China. The meeting highlighted recent advances in characterization of genetic variation, including genome-wide association studies and structural variation.  相似文献   
58.
Mahowald MW  Schenck CH 《Nature》2005,437(7063):1279-1285
Problems with sleep are one of the commonest reasons for seeking medical attention. Knowledge gained from basic research into sleep in animals has led to marked advances in the understanding of human sleep, with important diagnostic and therapeutic implications. At the same time, research guided by human sleep disorders is leading to important basic sleep concepts. For example, sleep may not be a global, but rather a local, brain phenomenon. Furthermore, contrary to common assumptions, wakefulness, rapid eye movement (REM) and non-REM sleep are not mutually exclusive states. This striking realization explains a fascinating range of clinical phenomena.  相似文献   
59.
60.
The observations that atherosclerosis often occurs in non-smokers without elevated levels of low-density lipoprotein cholesterol, and that most atherosclerosis loci so far identified in mice do not affect systemic risk factors associated with atherosclerosis, suggest that as-yet-unidentified mechanisms must contribute to vascular disease. Arterial walls undergo regional disturbances of metabolism that include the uncoupling of respiration and oxidative phosphorylation, a process that occurs to some extent in all cells and may be characteristic of blood vessels being predisposed to the development of atherosclerosis. To test the hypothesis that inefficient metabolism in blood vessels promotes vascular disease, we generated mice with doxycycline-inducible expression of uncoupling protein-1 (UCP1) in the artery wall. Here we show that UCP1 expression in aortic smooth muscle cells causes hypertension and increases dietary atherosclerosis without affecting cholesterol levels. UCP1 expression also increases superoxide production and decreases the availability of nitric oxide, evidence of oxidative stress. These results provide proof of principle that inefficient metabolism in blood vessels can cause vascular disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号