首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
系统科学   2篇
理论与方法论   5篇
现状及发展   29篇
研究方法   24篇
综合类   60篇
自然研究   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   9篇
  2011年   13篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   14篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   9篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1974年   1篇
  1971年   2篇
  1957年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
31.
32.
Termination of protein synthesis occurs when the messenger RNA presents a stop codon in the ribosomal aminoacyl (A) site. Class I release factor proteins (RF1 or RF2) are believed to recognize stop codons via tripeptide motifs, leading to release of the completed polypeptide chain from its covalent attachment to transfer RNA in the ribosomal peptidyl (P) site. Class I RFs possess a conserved GGQ amino-acid motif that is thought to be involved directly in protein-transfer-RNA bond hydrolysis. Crystal structures of bacterial and eukaryotic class I RFs have been determined, but the mechanism of stop codon recognition and peptidyl-tRNA hydrolysis remains unclear. Here we present the structure of the Escherichia coli ribosome in a post-termination complex with RF2, obtained by single-particle cryo-electron microscopy (cryo-EM). Fitting the known 70S and RF2 structures into the electron density map reveals that RF2 adopts a different conformation on the ribosome when compared with the crystal structure of the isolated protein. The amino-terminal helical domain of RF2 contacts the factor-binding site of the ribosome, the 'SPF' loop of the protein is situated close to the mRNA, and the GGQ-containing domain of RF2 interacts with the peptidyl-transferase centre (PTC). By connecting the ribosomal decoding centre with the PTC, RF2 functionally mimics a tRNA molecule in the A site. Translational termination in eukaryotes is likely to be based on a similar mechanism.  相似文献   
33.
34.
The seed beetles, Acanthoscelides quadridentatus and Acanthoscelides winderi are here recorded for the first time feeding on seeds of Mimosa setosa var. paludosa in the Brazilian Cerrado. Our main aims were to describe the temporal distribution, seed damage, and notes on the natural history of these two species on their host plant. We hypothesised that: (a) healthy seeds from infested fruits would have worse germination rate than healthy seeds from noninfested fruits, and (b) females of seed beetles would lay more eggs on large fruits. We made field observations and an experimental field study with the presence of seed beetles versus their exclusion on plants. Results revealed that seed beetles are synchronised with fruiting, with a temporal partitioning in occurrence. Attacked seeds did not germinate, whereas healthy seeds from infested fruits had worse germination rate than healthy seeds from noninfested fruits. Females of seed beetles laid more eggs on large fruits. These results suggest that seed beetles avoid competition through a temporal partitioning curcial for their coexistence, and select large fruits to oviposit as these fruits probably provide more food resource for their offspring. Furthermore, plants might perceive seed beetles’ damage and then reduce resource allocation on infested fruits.  相似文献   
35.
Fibroblast adhesion can be modulated by proteins released by neuroendocrine cells and neurons, such as chromogranin A (CgA) and its N-terminal fragment vasostatin-1 (VS-1, CgA1–78). We have investigated the mechanisms of the interaction of VS-1 with fibroblasts and of its pro-adhesive activity and have found that the proadhesive activity of VS-1 relies on its interaction with the fibroblast membrane via a phospholipid-binding amphipathic α-helix located within residues 47–66, as well as on the interaction of the adjacent C-terminal region 67–78, which is structurally similar to ezrin–radixin–moesin-binding phosphoprotein 50 (a membrane-cytoskeleton adapter protein), with other cellular components critical for the regulation of cell cytoskeleton.  相似文献   
36.
Multisubunit protein complexes are assembled in the endoplasmic reticulum (ER). Existing pools of single subunits and assembly intermediates ensure the efficient and rapid formation of complete complexes. While being kinetically beneficial, surplus components must be eliminated to prevent potentially harmful accumulation in the ER. Surplus single chains are cleared by the ubiquitin–proteasome system. However, the fate of not secreted assembly intermediates of multisubunit proteins remains elusive. Here we show by high-resolution double-label confocal immunofluorescence and immunogold electron microscopy that naturally occurring surplus fibrinogen Aα–γ assembly intermediates in HepG2 cells are dislocated together with EDEM1 from the ER to the cytoplasm in ER-derived vesicles not corresponding to COPII-coated vesicles originating from the transitional ER. This route corresponds to the novel ER exit path we have previously identified for EDEM1 (Zuber et al. Proc Natl Acad Sci USA 104:4407–4412, 2007). In the cytoplasm, detergent-insoluble aggregates of fibrinogen Aα–γ dimers develop that are targeted by the selective autophagy cargo receptors p62/SQSTM1 and NBR1. These aggregates are degraded by selective autophagy as directly demonstrated by high-resolution microscopy as well as biochemical analysis and inhibition of autophagy by siRNA and kinase inhibitors. Our findings demonstrate that different pathways exist in parallel for ER-to-cytoplasm dislocation and subsequent proteolytic degradation of large luminal protein complexes and of surplus luminal single-chain proteins. This implies that ER-associated protein degradation (ERAD) has a broader function in ER proteostasis and is not limited to the elimination of misfolded glycoproteins.  相似文献   
37.
Noonan and LEOPARD syndromes are developmental disorders with overlapping features, including cardiac abnormalities, short stature and facial dysmorphia. Increased RAS signaling owing to PTPN11, SOS1 and KRAS mutations causes approximately 60% of Noonan syndrome cases, and PTPN11 mutations cause 90% of LEOPARD syndrome cases. Here, we report that 18 of 231 individuals with Noonan syndrome without known mutations (corresponding to 3% of all affected individuals) and two of six individuals with LEOPARD syndrome without PTPN11 mutations have missense mutations in RAF1, which encodes a serine-threonine kinase that activates MEK1 and MEK2. Most mutations altered a motif flanking Ser259, a residue critical for autoinhibition of RAF1 through 14-3-3 binding. Of 19 subjects with a RAF1 mutation in two hotspots, 18 (or 95%) showed hypertrophic cardiomyopathy (HCM), compared with the 18% prevalence of HCM among individuals with Noonan syndrome in general. Ectopically expressed RAF1 mutants from the two HCM hotspots had increased kinase activity and enhanced ERK activation, whereas non-HCM-associated mutants were kinase impaired. Our findings further implicate increased RAS signaling in pathological cardiomyocyte hypertrophy.  相似文献   
38.
Autosomal dominant centronuclear myopathy is a rare congenital myopathy characterized by delayed motor milestones and muscular weakness. In 11 families affected by centronuclear myopathy, we identified recurrent and de novo missense mutations in the gene dynamin 2 (DNM2, 19p13.2), which encodes a protein involved in endocytosis and membrane trafficking, actin assembly and centrosome cohesion. The transfected mutants showed reduced labeling in the centrosome, suggesting that DNM2 mutations might cause centronuclear myopathy by interfering with centrosome function.  相似文献   
39.
40.
J J Bruno  L A Taylor  M J Droller 《Nature》1974,251(5477):721-723
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号