首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43904篇
  免费   239篇
  国内免费   539篇
系统科学   1211篇
丛书文集   75篇
教育与普及   277篇
理论与方法论   508篇
现状及发展   29055篇
研究方法   2篇
综合类   11367篇
自然研究   2187篇
  2014年   392篇
  2013年   800篇
  2011年   2357篇
  2009年   591篇
  2008年   586篇
  2007年   623篇
  2006年   742篇
  2005年   915篇
  2004年   2039篇
  2003年   1658篇
  2002年   1305篇
  2001年   887篇
  2000年   417篇
  1999年   670篇
  1998年   638篇
  1997年   770篇
  1996年   527篇
  1995年   394篇
  1994年   678篇
  1993年   687篇
  1992年   641篇
  1991年   578篇
  1990年   633篇
  1989年   465篇
  1988年   446篇
  1987年   440篇
  1986年   539篇
  1985年   640篇
  1984年   610篇
  1983年   528篇
  1982年   704篇
  1981年   751篇
  1980年   811篇
  1979年   1042篇
  1978年   997篇
  1977年   1005篇
  1976年   909篇
  1975年   870篇
  1974年   595篇
  1973年   937篇
  1972年   1011篇
  1971年   943篇
  1970年   907篇
  1969年   899篇
  1968年   863篇
  1967年   721篇
  1966年   578篇
  1965年   503篇
  1964年   450篇
  1963年   414篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Many notions regarding the function, structure and regulation of cholera toxin expression have remained essentially unaltered in the last 15 years. At the same time, recent findings have generated additional perspectives. For example, the cholera toxin genes are now known to be carried by a non-lytic bacteriophage, a previously unsuspected condition. Understanding of how the expression of cholera toxin genes is controlled by the bacterium at the molecular level has advanced significantly and relationships with cell-density-associated (quorum-sensing) responses have recently been discovered. Regarding the cell intoxication process, the mode of entry and intracellular transport of cholera toxin are becoming clearer. In the immunological field, the strong oral immunogenicity of the non-toxic B subunit of cholera toxin (CTB) has been exploited in the development of a now widely licensed oral cholera vaccine. Additionally, CTB has been shown to induce tolerance against co-administered (linked) foreign antigens in some autoimmune and allergic diseases. Received 25 October 2007; accepted 12 December 2007  相似文献   
972.
Human eosinophil cationic protein (ECP)/ ribonuclease 3 (RNase 3) is a protein secreted from the secondary granules of activated eosinophils. Specific properties of ECP contribute to its cytotoxic activities associated with defense mechanisms. In this work the ECP cytotoxic activity on eukaryotic cell lines is analyzed. The ECP effects begin with its binding and aggregation to the cell surface, altering the cell membrane permeability and modifying the cell ionic equilibrium. No internalization of the protein is observed. These signals induce cell-specific morphological and biochemical changes such as chromatin condensation, reversion of membrane asymmetry, reactive oxygen species production and activation of caspase-3-like activity and, eventually, cell death. However, the ribonuclease activity component of ECP is not involved in this process as no RNA degradation is observed. In summary, the cytotoxic effect of ECP is attained through a mechanism different from that of other cytotoxic RNases and may be related with the ECP accumulation associated with the inflammatory processes, in which eosinophils are present. Received 26 October 2007; accepted 23 November 2007  相似文献   
973.
Myosin V from head to tail   总被引:1,自引:1,他引:0  
Myosin V (myoV), a processive cargo transporter, has arguably been the most well-studied unconventional myosin of the past decade. Considerable structural information is available for the motor domain, the IQ motifs with bound calmodulin or light chains, and the cargo-binding globular tail, all of which have been crystallized. The repertoire of adapter proteins that link myoV to a particular cargo is becoming better understood, enabling cellular transport processes to be dissected. MyoV is processive, meaning that it takes many steps on actin filaments without dissociating. Its extended lever arm results in long 36-nm steps, making it ideal for single molecule studies of processive movement. In addition, electron microscopy revealed the structure of the inactive, folded conformation of myoV when it is not transporting cargo. This review provides a background on myoV, and highlights recent discoveries that show why myoV will continue to be an active focus of investigation. Received 31 October 2007; received after revision 4 December 2007; accepted 2 January 2008  相似文献   
974.
975.
976.
Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved. Received 7 November 2007; received after revision 19 December 2007; accepted 21 December 2007 O. Cohausz, C. Blenn: These two authors contributed equally to this work.  相似文献   
977.
978.
Anandamide is a lipid messenger that carries out a wide variety of biological functions. It has been suggested that anandamide accumulation involves binding to a saturable cellular component. To identify the structure(s) involved in this process, we analyzed the intracellular distribution of both biotinylated and radiolabeled anandamide, providing direct evidence that lipid droplets, also known as adiposomes, constitute a dynamic reservoir for the sequestration of anandamide. In addition, confocal microscopy and biochemical studies revealed that the anandamide-hydrolase is also spatially associated with lipid droplets, and that cells with a larger adiposome compartment have an enhanced catabolism of anandamide. Overall, these findings suggest that adiposomes may have a critical role in accumulating anandamide, possibly by connecting plasma membrane to internal organelles along the metabolic route of this endocannabinoid. S. Oddi, F. Fezza: These authors contributed equally to the study.  相似文献   
979.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:2,自引:0,他引:2  
The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods.  相似文献   
980.
The ability to produce differentiated cell types at will offers one approach to cell therapy and therefore the treatment and cure of degenerative diseases such as diabetes and liver failure. Until recently it was thought that differentiated cells could only be produced from embryonic or adult stem cells. However, we now know that this is not the case, and there is a growing body of evidence to show that one differentiated cell type can convert into a completely different phenotype (transdifferentiation). Understanding the cellular and molecular basis of transdifferentiation will allow us to reprogram cells for transplantation. This approach will complement the use of embryonic and adult stem cells in the treatment of degenerative disorders. In this review, we will focus on some well-documented examples of transdifferentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号