排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
代价敏感学习算法的目的是最小化各种代价总和,与其他学习算法一样,它必须面对过度拟合这个挑战性问题,即分类器可以较好地拟合训练数据,但对测试或实际数据的效果较差.针对代价敏感学习的这些缺点,提出两个克服过度拟合的策略.第一个滤波技术策略针对TCSDT分类建立,滤波后的概率估计值被用于对每个分离属性的潜在误分类代价计算,并延缓潜在大误分类代价的分离属性的优先选择,最后,采用交叉验证方法决定m的值.第二个策略与基于标准错误的Laplace剪枝方法不同,阈值剪枝采用一个预先定义的阈值集合(跟代价有关)来确定决策树的一个叶节点是否被剪除.这两策略可独立或联合用于避免TCSDT分类的数据过度拟合.实验表明,所提出的两算法不但在代价敏感学习中有优势,在非代价敏感学习也具有优势,可以有效地减弱过度拟合,有很强的健壮性,UCI数据集实验结果显示算法的拟合能力平均优于存在方法10%以上. 相似文献
12.
文本分类技术是文本信息处理的核心技术之一,主要包括文本的向量模型表示、文本特征选择和分类器训练三大过程.本文提出了一种混合(EIBA+DHChi2)特征选择算法,并将所获取的特征作为软集合理论中的参数集进行文本分类,从而建立了一种新的基于软集合理论的文本分类技术.实验表明查准率与查全率比原有算法都有所提高,说明新的基于... 相似文献
13.
14.
基于小波数据结构设计了一种用于挖掘新的周期模式(RPP)的算法.该周期模式不同于以支持度为度量标准挖掘的周期或半周期模式,它能有效地发现RPP中P=〈Am→Bn〉这样的模式.实验证明该算法是有效的,且具有很好的延展性. 相似文献
15.
利用项集有序特性改进Apriori算法 总被引:4,自引:2,他引:4
Apriori算法是挖掘关联规则的一个经典算法,通过分析、研究该算法的基本思想,并利用项集的有序特性对其进行改进,减少了生成的候选集数量,从而提高算法的效率. 相似文献