首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
  国内免费   1篇
现状及发展   18篇
研究方法   10篇
综合类   67篇
  2017年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   9篇
  2007年   13篇
  2006年   9篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1988年   2篇
  1985年   1篇
  1982年   2篇
  1973年   4篇
  1972年   2篇
  1968年   1篇
  1967年   3篇
排序方式: 共有95条查询结果,搜索用时 645 毫秒
1.
采用Braun-Blanquet,Fujiwara的植物社会学方法,对分布于中亚热带北部的八大公山及中亚热带南部的南山的亮叶水青冈林进行了植被生态学的比较研究,两个群落被区分.并比较了两群落的种组成、结构及生长更新的特征。  相似文献   
2.
3.
4.
Inactivation of TGF-beta family signaling is implicated in colorectal tumor progression. Using cis-Apc(+/Delta716) Smad4(+/-) mutant mice (referred to as cis-Apc/Smad4), a model of invasive colorectal cancer in which TGF-beta family signaling is blocked, we show here that a new type of immature myeloid cell (iMC) is recruited from the bone marrow to the tumor invasion front. These CD34(+) iMCs express the matrix metalloproteinases MMP9 and MMP2 and the CC-chemokine receptor 1 (CCR1) and migrate toward the CCR1 ligand CCL9. In adenocarcinomas, expression of CCL9 is increased in the tumor epithelium. By deleting Ccr1 in the background of the cis-Apc/Smad4 mutant, we further show that lack of CCR1 prevents accumulation of CD34(+) iMCs at the invasion front and suppresses tumor invasion. These results indicate that loss of transforming growth factor-beta family signaling in tumor epithelium causes accumulation of iMCs that promote tumor invasion.  相似文献   
5.
This paper investigates whether some forecasters consistently outperform others using Japanese CPI forecast data of 42 forecasters over the past 18 quarters. It finds that the accuracy rankings of 0, 1, 2, and 5‐month forecasts are significantly different from those that might be expected when all forecasters had equal forecasting ability. Moreover, their rankings of the relative forecast levels are also significantly different from a random one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
We found for the first time that IL-4 and IL-13, signature type 2 cytokines, are able to induce periostin expression. We and others have subsequently shown that periostin is highly expressed in chronic inflammatory diseases―asthma, atopic dermatitis, eosinophilc chronic sinusitis/chronic rhinosinusitis with nasal polyp, and allergic conjunctivitis—and that periostin plays important roles in the pathogenesis of these diseases. The epithelial/mesenchymal interaction via periostin is important for the onset of allergic inflammation, in which periostin derived from fibroblasts acts on epithelial cells or fibroblasts, activating their NF-κB. Moreover, the immune cell/non-immune cell interaction via periostin may be also involved. Now the significance of periostin has been expanded into other inflammatory or fibrotic diseases such as scleroderma and pulmonary fibrosis. The cross-talk of periostin with TGF-β or pro-inflammatory cytokines is important for the underlying mechanism of these diseases. Because of its pathogenic importance and broad expression, diagnostics or therapeutic drugs can be potentially developed to target periostin as a means of treating these diseases.  相似文献   
7.
A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C230) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode metacleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.  相似文献   
8.
Mori M  Abegg MH  Gähwiler BH  Gerber U 《Nature》2004,431(7007):453-456
The hippocampus, a brain structure essential for memory and cognition, is classically represented as a trisynaptic excitatory circuit. Recent findings challenge this view, particularly with regard to the mossy fibre input to CA3, the second synapse in the trisynaptic pathway. Thus, the powerful mossy fibre input to CA3 pyramidal cells might mediate both synaptic excitation and inhibition. Here we show, by recording from connected cell pairs in rat entorhinal-hippocampal slice cultures, that single action potentials in a dentate granule cell evoke a net inhibitory signal in a pyramidal cell. The hyperpolarization is due to disynaptic feedforward inhibition, which overwhelms monosynaptic excitation. Interestingly, this net inhibitory synaptic response changes to an excitatory signal when the frequency of presynaptic action potentials increases. The process responsible for this switch involves the facilitation of monosynaptic excitatory transmission coupled with rapid depression of inhibitory circuits. This ability to immediately switch the polarity of synaptic responses constitutes a novel synaptic mechanism, which might be crucial to the state-dependent processing of information in associative hippocampal networks.  相似文献   
9.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   
10.
Manipulation of elementary charge in a silicon charge-coupled device   总被引:3,自引:0,他引:3  
Fujiwara A  Takahashi Y 《Nature》2001,410(6828):560-562
The ultimate limit in the operation of an electronic device is the manipulation of a single charge. Such a limit has been achieved in single-electron tunnelling devices. However, these devices are based on multiple tunnel barriers and conductive islands, which are complex structures to fabricate. Here we demonstrate another type of device that can also manipulate elementary charge, but which is more suitable for large-scale integration. The device consists of two closely packed silicon wire-MOSFETs, which are commonly used building blocks of electronic circuits. We have developed a scheme to generate and store holes in the channels of either of these MOSFETs. Subsequently, holes can be transferred between the two MOSFETs at the level of an elementary charge, and their exact position can be monitored. This single-charge transfer device, which is operated at 25 K, is in effect a charge-coupled device. This is also the first realization of a silicon-based device that manipulates elementary charge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号