首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
现状及发展   7篇
研究方法   1篇
综合类   4篇
  2011年   1篇
  2005年   1篇
  1999年   1篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1965年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
A radiation hybrid map of the zebrafish genome.   总被引:12,自引:0,他引:12  
Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.  相似文献   
3.
4.
5.
6.
7.
8.
9.
10.
Kirn TJ  Jude BA  Taylor RK 《Nature》2005,438(7069):863-866
Many bacteria that cause diseases must be able to survive inside and outside the host. Attachment to and colonization of abiotic or biotic surfaces is a common mechanism by which various microorganisms enhance their ability to survive in diverse environments. Vibrio cholerae is a Gram-negative aquatic bacillus that is often found in the environment attached to the chitinous exoskeletons of zooplankton. It has been suggested that attachment to zooplankton enhances environmental survival of Vibrio spp., probably by providing both an abundant source of carbon and nitrogen and protection from numerous environmental challenges. On ingestion by humans, some serogroups of V. cholerae cause the diarrhoeal disease cholera. The pathophysiology of cholera is a result of the effects of cholera toxin on intestinal epithelial cells. For sufficient quantities of cholera toxin to reach the intestinal epithelium and to produce clinical symptoms, colonization of the small bowel must occur. Because most V. cholerae do not colonize humans, but all probably require strategies for survival in the environment, we considered that colonization factors selected for in the environment may be the same as those required for intestinal colonization of humans. In support of this hypothesis, here we have identified a single protein required for efficient intestinal colonization that mediates attachment to both zooplankton and human epithelial cells by binding to a sugar present on both surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号