首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Dynamical coupling of wind and ocean waves through wave-induced air flow   总被引:1,自引:0,他引:1  
Hristov TS  Miller SD  Friehe CA 《Nature》2003,422(6927):55-58
Understanding the physical mechanisms behind the generation of ocean waves by wind has been a longstanding challenge. Previous studies have assumed that ocean waves induce fluctuations in velocity and pressure of the overlying air that are synchronized with the waves, and numerical models have supported this assumption. In a complex feedback, these fluctuations provide the energy for wave generation. The spatial and temporal structure of the wave-induced airflow therefore holds the key to the physics of wind-wave coupling, but detailed observations have proved difficult. Here we present an analysis of wind velocities and ocean surface elevations observed over the open ocean. We use a linear filter to identify the wave-induced air flow from the measurements and find that its structure is in agreement with 'critical-layer' theory. Considering that the wave-induced momentum flux is then controlled by the wave spectrum and that it varies considerably in vertical direction, a simple parameterization of the total air-sea momentum flux is unlikely to exist.  相似文献   
2.
The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号