首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   11篇
  国内免费   2篇
系统科学   7篇
教育与普及   2篇
理论与方法论   4篇
现状及发展   89篇
研究方法   91篇
综合类   217篇
自然研究   5篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   11篇
  2013年   5篇
  2012年   50篇
  2011年   54篇
  2010年   23篇
  2009年   6篇
  2008年   35篇
  2007年   32篇
  2006年   35篇
  2005年   26篇
  2004年   26篇
  2003年   17篇
  2002年   26篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1975年   3篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
1.
This paper is an applied study about forecasting trend output and the output gap in the Euro area. The need for trend output forecasts is justified by an analysis of the monetary strategy of the European Central Bank. Trend output serves as a direct inflation indicator and helps to determine the reference value for money. For both purposes, trend output has to be forecasted. A permanent–transitory decomposition based on cointegration restrictions gives an estimate of trend output in the Euro area. Ex‐ante point forecasts of trend output are computed and bootstrap simulation is employed to construct prediction intervals that take estimation uncertainty into consideration. The uncertainty of trend output and the output gap is quite large and raises questions about their usefulness as indicators for monetary policy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
Poly-ADP-ribose polymerases (PARPs) use NAD+ as substrate to generate polymers of ADP-ribose. We targeted the catalytic domain of human PARP1 as molecular NAD+ detector into cellular organelles. Immunochemical detection of polymers demonstrated distinct subcellular NAD+ pools in mitochondria, peroxisomes and, surprisingly, in the endoplasmic reticulum and the Golgi complex. Polymers did not accumulate within the mitochondrial intermembrane space or the cytosol. We demonstrate the suitability of this compartment-specific NAD+ and poly-ADP-ribose turnover to establish intra-organellar protein localization. For overexpressed proteins, genetically endowed with PARP activity, detection of polymers indicates segregation from the cytosol and consequently intra-organellar residence. In mitochondria, polymer build-up reveals matrix localization of the PARP fusion protein. Compared to presently used fusion tags for subcellular protein localization, these are substantial improvements in resolution. We thus established a novel molecular tool applicable for studies of subcellular NAD metabolism and protein localization.  相似文献   
3.
This study examines whether the evaluation of a bankruptcy prediction model should take into account the total cost of misclassification. For this purpose, we introduce and apply a validity measure in credit scoring that is based on the total cost of misclassification. Specifically, we use comprehensive data from the annual financial statements of a sample of German companies and analyze the total cost of misclassification by comparing a generalized linear model and a generalized additive model with regard to their ability to predict a company's probability of default. On the basis of these data, the validity measure we introduce shows that, compared to generalized linear models, generalized additive models can reduce substantially the extent of misclassification and the total cost that this entails. The validity measure we introduce is informative and justifies the argument that generalized additive models should be preferred, although such models are more complex than generalized linear models. We conclude that to balance a model's validity and complexity, it is necessary to take into account the total cost of misclassification.  相似文献   
4.
5.
6.
7.
14-3-3 proteins are crucial in a wide variety of cellular responses including cell cycle progression, DNA damage checkpoints and apoptosis. One particular 14-3-3 isoform, sigma, is a p53-responsive gene, the function of which is frequently lost in human tumours, including breast and prostate cancers as a result of either hypermethylation of the 14-3-3sigma promoter or induction of an oestrogen-responsive ubiquitin ligase that specifically targets 14-3-3sigma for proteasomal degradation. Loss of 14-3-3sigma protein occurs not only within the tumours themselves but also in the surrounding pre-dysplastic tissue (so-called field cancerization), indicating that 14-3-3sigma might have an important tumour suppressor function that becomes lost early in the process of tumour evolution. The molecular basis for the tumour suppressor function of 14-3-3sigma is unknown. Here we report a previously unknown function for 14-3-3sigma as a regulator of mitotic translation through its direct mitosis-specific binding to a variety of translation/initiation factors, including eukaryotic initiation factor 4B in a stoichiometric manner. Cells lacking 14-3-3sigma, in marked contrast to normal cells, cannot suppress cap-dependent translation and do not stimulate cap-independent translation during and immediately after mitosis. This defective switch in the mechanism of translation results in reduced mitotic-specific expression of the endogenous internal ribosomal entry site (IRES)-dependent form of the cyclin-dependent kinase Cdk11 (p58 PITSLRE), leading to impaired cytokinesis, loss of Polo-like kinase-1 at the midbody, and the accumulation of binucleate cells. The aberrant mitotic phenotype of 14-3-3sigma-depleted cells can be rescued by forced expression of p58 PITSLRE or by extinguishing cap-dependent translation and increasing cap-independent translation during mitosis by using rapamycin. Our findings show how aberrant mitotic translation in the absence of 14-3-3sigma impairs mitotic exit to generate binucleate cells and provides a potential explanation of how 14-3-3sigma-deficient cells may progress on the path to aneuploidy and tumorigenesis.  相似文献   
8.
Oxysterols direct immune cell migration via EBI2   总被引:1,自引:0,他引:1  
Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7α,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7α,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7α,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.  相似文献   
9.
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号