共查询到17条相似文献,搜索用时 62 毫秒
1.
基于长短时特征融合的语音情感识别方法 总被引:1,自引:0,他引:1
情感识别领域中广泛使用的情感特征有基于语句的全局统计特征和基于语音帧的时序特征.针对这2类基于不同时长的情感特征均不能够最有效地表达情感信息的问题,该文提出使用"语段特征"用于识别,并给出了各类情感状态对应的"最佳识别段长".为进一步提高系统识别性能,该文还构建了全局控制Elman神经网络用于将全局统计特征与基于语段的时序特征相融合.实验表明;融合长短时特征后的平均系统识别率可达66.0%,与单独使用各类特征或语段特征相比分别提高了5.9%和1.7%,同时有效降低了各情感之间的混淆度. 相似文献
2.
语音情感识别是人机交互的重要方向,可广泛应用于人机交互和呼叫中心等领域,有很大应用价值。近年来,深度神经网络在识别情感方面取得了巨大成功,但现有方法对高层语音特征提取会丢失大量原始信息并且识别准确率不高,本文提出了一种新的语音情感识别方法,由卷积神经网络从原始信号中提取特征,并在其堆叠一个2层长短时记忆神经网络,最终识别准确率达到91.74%,本文方法显著优于基于EMO-DB数据集等其他方法。 相似文献
3.
结合K近邻、核学习方法、特征线重心法和LDA算法,提出了用于情感识别的LDA+kernel-KNNFLC方法.首先针对先验样本特征造成的计算量庞大问题,采用重心准则学习样本距离,改进了核学习的K近邻方法;然后加入LDA对情感特征向量进行优化,在避免维度冗余的情况下,更好地保证了情感信息识别的稳定性.最后,通过对特征空间再学习,结合LDA的kernel-KNNFLC方法优化了情感特征向量的类间区分度,适合于语音情感识别.对包含120维全局统计特征的语音情感数据库进行仿真实验,对降维方案、情感分类器和维度参数进行了多组对比分析.结果表明,LDA+kernel-KNNFLC方法在同等条件下性能提升效果最显著. 相似文献
4.
基于混沌神经网络的语音识别方法 总被引:4,自引:0,他引:4
基于语音信号的时变特性,研究了神经网络语音识别的方法.把混沌特性引入到神经元,构造了一种新的多层混沌神经网络结构,同时推导了相应的学习算法.把这种混沌神经网络用于语音识别,并与常用的神经网络语音识别方法作了比较.实验结果表明,混沌神经网络方法的平均识别率要高于同等条件下常用神经网络方法的识别率. 相似文献
5.
6.
介绍了径向基函数神经网络的原理、训练算法,并建立了RBF神经网络的语音情感识别的模型。在实验中比较了BP神经网络与RBF神经网络分别用于语音情感识别识别率,RBF神经网络的平均识别率高于BP神经网络3%。结果表明,基于RBF神经网络的语音情感识别方法的有效性。 相似文献
7.
提出了一种新颖的语音情感识别结构,从声音文件中提取梅尔频率倒谱系数(Melscale frequency cepstral coefficients,MFCCs)、线性预测倒谱系数(linear predictive cepstral coefficients,LPCCs)、色度图、梅尔尺度频谱图、Tonnetz表示和频谱对比度特征,并将其作为一维卷积神经网络(convolutional neural network,CNN)的输入.构建由一维卷积层、Dropout层、批标准化层、权重池化层、全连接层和激活层组成的网络,并使用Ryerson情感说话/歌唱视听(Ryerson audio-visual database of emotional speech and song,RAVDESS)数据集、柏林语音数据集(Berlin emotional database,EMO-DB)、交互式情绪二元运动捕捉(interactive emotional dyadic motion capture,IEMOCAP)数据集这3个数据集的样本来识别情感.为提高分类精度,利用增量方法修改初始模型.为... 相似文献
8.
选取三种典型的情感状态,通过对在不同情感状态下大量取样的语音样本的基频、能量、时长及相关韵律特征参数作统计分析,基于统计结果使用PCA方法进行情感状态识别实验,识别准确率达91.67%.结合情感识别结果,使用DTW算法通过模式匹配进行小词汇表的语音识别,提高语音识别正确率;给出输出语音韵律特征参数的调整方法,使人机语音交互得到更加人性化的改进. 相似文献
9.
基于改进的隐马尔科夫模型的语音识别方法 总被引:1,自引:0,他引:1
袁里驰 《中南大学学报(自然科学版)》2008,39(6)
针对隐马尔可夫(HMM)语音识别模型状态输出独立同分布等与语音实际特性不够协调的假设以及在使用段长信息时存在的缺陷,对隐马尔可夫模型进行改进,提出马尔可夫族模型。马尔可夫族模型可看作一个数学上由多个马尔可夫链构成的多重随机过程,HMM模型则是双重随机过程,因而,HMM模型可视为马尔可夫族模型的特例。马尔可夫族模型用条件独立性假设取代了HMM模型的独立性假设。相对条件独立性假设,独立性假设是过强假设,因而,基于马尔可夫族模型的语音模型更符合语音实际物理过程。在马尔可夫族语音识别模型中引入状态段长信息,能自动根据语速对语音单元段长进行调整。非特定人连续语音实验结果表明,利用状态段长信息的改进语音识别模型比经典HMM模型的性能明显提高。 相似文献
10.
基于MFCC的语音情感识别 总被引:4,自引:0,他引:4
情感语音中携带着丰富的信息,在人机交互领域有着广阔的应用.Mel频率是基于人耳听觉特性提出来的.它与Hz频率成非线性对应关系.Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征,MFCC已经广泛地应用在语音识别领域.由于Mel频率与Hz频率之间非线性的对应关系,使得MFCC随着频率的提高,其计算精度随之下降.因此,在应用中常常只使用低频MFCC,而丢弃中高频MFCC.针对该问题进行了研究,修正了Hz-Mel非线性对应关系,提升了中高频系数的计算精度,并将其作为低频MFCC的补充,应用到语音情感识别中.实验证明,改进之后的算法与经典算法比较,在不同的特征组合上识别率都有不同程度的提高,从而证明了Mid MFCC特征计算方法的有效性. 相似文献
11.
基于语音声学特征的情感信息识别 总被引:10,自引:0,他引:10
为提高情感语音识别的正确率,研究了声学参数的统计特征和时序特征在区分情感中的作用,并提出了一种将两者相融合的情感识别方法。在提取出基本的韵律参数和频谱参数后,首先利用PNN(probab ilistic neura l netw ork)和HMM(h idden m arkov m ode l)分别对声学参数的统计特征和时序特征进行处理。计算它们各自属于每类情感的概率,获得采用加法规则和乘法规则融合统计特征和时序特征的识别结果。实验结果表明:各组特征在区分情感方面的侧重不尽相同,通过特征融合,平均识别正确率相较单独采用统计特征或时序特征均有提高,在最好情况下达到了92.9%。这说明了该方法的有效性。 相似文献
12.
音乐情感识别是音乐检索的一个重要组成部分.基于音乐声学特征分析,尝试提取代表音乐声学特性的时域、频域、倒谱域的各种特征,并利用支持向量机(support vector machine,简称SVM)算法对中文音频进行情感分类,以研究不同特征组合在音乐情感分类上的效果.通过对比各种不同特征组合的音乐情感识别效果,发现由4个时域特征、频谱、幅度谱和相位谱组成的音乐特征对中文音乐情感分类的效果良好. 相似文献
13.
提出一种采用超音段韵律特征和GMM-UBM模型结构的文本无关的说话人识别方法,用多尺度小波分析方法从短时倒谱参数MFCC和基频F0随时间变化的韵律中分别提取可用于文本无关说话人识别的超音段韵律特征参数PMFCC和PF0,并组成联合参数PMFCCF0.在NIST068side-1side复杂背景电话手机语音数据库上的说话人确认实验则表明,采用一阶小波分析方法提取的超音段韵律参数PMFCC的识别性能与短时MFCC相当,采用超音段韵律特征PMFCCF0的系统确认性能比采用短时MFCC系统有较大的提高.在微软数据库进行不同信噪比测试语音的说话人辨认实验表明,PMFCCF0有比短时MFCC更好的噪声鲁棒性. 相似文献
14.
曾光菊 《四川理工学院学报(自然科学版)》2011,24(4):472-476
语音情感识别是从语音信号中提取一些有效的声学特征,然后利用智能计算或者识别的方法对话者的情感状态进行识别。介绍了国内外在该领域中关于语音情感数据库、特征提取、识别方法的研究现状。基于对该领域现状的了解,发现特征提取对识别率有着非常大的影响。录制了1050句语音,每句语音提取了30个特征,从而形成了一个1050×30的数据库。提出了用粗糙集理论中的信息一致性对数据库中的30个特征进行化简,最后得到了12个特征。用神经网络中的BP网络对话者的情感状态进行识别,最高识别率达到了84%。从实验结果发现不同的情感用不同的方法识别结果更好。 相似文献
15.
目前,高准确率的语音识别需要在大规模语料库上进行学习才能获得,然而大规模语料库的构建成本较高,某些语言很难采集到充足的语料,因此,基于小规模语料库的语音识别已成为目前挑战性的研究问题.元学习是模仿人类利用已有经验快速学习新知识的机器学习方法,在机器视觉单样本学习任务中表现出明显的优势,已成为新的机器学习研究热点.将元学习应用于单样本语音识别是解决基于小规模语料库语音识别这一挑战性问题的有效途径,在TIMIT和佤语数据库上,开展了基于Reptile元学习算法的单样本孤立词语音识别研究.实验结果表明,该算法能有效地提升模型收敛速度与泛化精度,从而提升了模型的学习能力,说明元学习方法有助于解决小规模语料语音识别这一挑战性问题. 相似文献
16.
基于环境特征的语音识别置信度研究 总被引:2,自引:0,他引:2
传统的语音识别置信度方法基于各种静态特征进行分类判决,而忽略了词与周围环境之间的关系所携带的信息。为了进一步提高置信度特征的分类性能,该文提出了上下文环境、动态环境、句全局环境共3类5种环境特征,从空间与时间角度较全面地描述了词与环境之间的关系。实验结果表明:静态特征与环境特征联合分类的性能与只用静态特征相比有不同程度的提高,其中,静态环境与环境特征的二元联合最高有5.02%的相对改进,三元联合最高有6.11%的相对改进,说明环境特征确实是一种有价值的置信度特征,并且这几类环境特征之间存在一定的独立性。 相似文献
17.
面向训练语料有限的语音识别任务,基于动态时间规整(dynamic time warping, DTW)算法对俄语语音进行识别。首先,以跨语言标注的语音语料为资源基础,研究融合音字转换和机器翻译的语音识别方法。其次,结合俄语语音特点,以元音为中心设置动态门限阈值,实现精确至音节的端点检测,识别速度提高了34.4%,准确率提高了14%。然后,综合时域、频域分析,提取反映语音静态特征和动态变化的参数模板。另外,引入全局限制和早弃策略改进DTW算法,避免病态匹配,缩小计算规模,使速度提高了19.7%,准确率提高了4.8%。在俄语短指令语音集上做五折交叉验证,识别准确率达到74.9%。 相似文献