共查询到19条相似文献,搜索用时 93 毫秒
1.
笔者提出了非定常Stokes问题的半离散问断有限体积元格式,得到了间断有限体积元格式解的最优离散H1范数和L2范数的误差估计. 相似文献
2.
考虑了一类非定常Navier-Stokes方程,采用混合元方法计算了应力p和速度u,并得到了最优的L^2估计。结果表明,用该方法计算是可行的。 相似文献
3.
研究了一类双曲方程的H1-Galerkin混合有限元方法问题,根据单元的特点,得到了和传统的混合元相同的最优估计以及超收敛结果,并采用插值后处理算子技巧得到了整体超收敛. 相似文献
4.
王焕清 《三峡大学学报(自然科学版)》2009,31(4):106-108
利用H^1-Galerkin混合有限元方法分析了线性粘弹性方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证LBB相容性条件即可得到和传统混合有限元方法相同的收敛阶数. 相似文献
5.
利用H1-Galerkin混合有限元方法分析了二维线性对流扩散方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是有限元空间的选取不需满足LBB相容性条件即可得到和传统混合有限元方法相同的收敛阶数. 相似文献
6.
二维不可压Navier-Stokes方程的特征混合有限元算法 总被引:4,自引:0,他引:4
针对二维不可压Navier-Stokes方程的特点,对流函数方程及漩涡度方程采用混含有限元方法离散,避免了处理漩涡度边界的困难,同时,对漩涡度方程的对流项,使用了沿特征线离散技术,提高了计算效果。 相似文献
7.
Sobolev方程的H1-Galerkin混合有限元方法 总被引:1,自引:0,他引:1
利用H1-Galerkin混合有限元方法分析了一维线性Sobolev方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证相容性条件即可得到和传统混合有限元方法相同的收敛阶数. 相似文献
8.
基于R -T空间Vh×Wh H(div;Ω)×L2 (Ω) ,本文讨论了Sobolev方程 -div{α ut+b1 u}=f的初边值问题混合有限元方法的最大模误差估计 .得到了数值解在L∞( 0 ,T ;L∞(Ω) )模下的拟最优阶误差估计 (有限元空间指数k =0 )和最优阶误差估计 (有限元空间指数k≥ 1)以及在L∞( 0 ,T ;L∞(Ω) 2 )模下的拟最优阶误差估计 . 相似文献
9.
给出了具有混合边界的稳定型Stokes方程的余项型后验误差估计,该误差估计是在Crouzeix-Raviart非协调有限单元上得到的,并给出了误差的上下界,上界证明中使用的“Helmholtz分解”解决了非协调元中不能使用“Galerkin正交”的问题,下界证明主要依赖“bubble函数”. 相似文献
10.
目的讨论二维不可压缩Stokes方程基于等阶有限元R1-R1元的加罚有限元方法。方法在一定的正则性条件下,利用加罚有限元方法从理论上证明其收敛性。结果加罚有限元方法对于低等阶有限元R1-R1具有很好的稳定性。结论加罚有限元方法是一种行之有效的方法。 相似文献
11.
对Sobolev方程采用混合有限元法进行数值模拟,给出了相应的半离散格式及其误差估计,构造了几组简单的低阶元.与已有文献中的有限元方法相比,该方法所采用的变分形式较简单,计算量较小,精度较高.通过对单元刚度矩阵的分析,得出在一维和二维情形下通量函数选取某些不同模式得到的关于位移的单元刚度矩阵等同 相似文献
12.
对Sobolev方程,作者构造了一组简单的低阶四边形混合元.结合半离散有限元计算格式,通过分析,作者改进了郑和胡的收敛性结果.与已有文献中的有限元相比,该元素计算自由度少,精度较高.数值实验也验证了方法的有效性. 相似文献
13.
戴培良 《苏州大学学报(医学版)》2004,20(2):17-22
主要讨论了一类Stokes问题的非协调有限元方法一全离散情形,首先给出了所讨论问题的非协调Galerkin有限元方法的全离散格式,其次对所讨论问题的解与其所给出的离散问题的解之间的误差进行了分析研究,最后利用Stokes投影算子的性质,得到了L2模和能量模方面的一些误差估计. 相似文献
14.
对Sobolev方程采用半有限元法进行数值模拟.通过将空间变量和时间变量分离,得到Sobolev方程的离散格式.首先对空间变量应用有限元方法进行离散化,得到常微分方程组的初值问题;再对时间变量应用有限差分法进行离散化,得到一系列线性方程组,求解可得到Sobolev方程的数值解.本文从理论上推导出了本文所讨论的Sobolev方程半有限元算法的矩阵算法格式,分析了其可行性.在最后给出了数值例子,从数值例子中进一步验证了半有限元方法的可行性. 相似文献
15.
作者考虑了二维Sobolev型方程混合有限元解的超收敛问题.通过在矩形网格上构造混合有限元空间,并利用积分恒等式对方程的解进行高精度算法分析,作者获得了解的超逼近性质和插值有限元解的整体超收敛结果.数值实验验证了方法的有效性. 相似文献
16.
应用特征有限元Galerkin方法,研究一维非线性对流扩散方程的数值求解问题。给出非线性对流扩散方程第二边值问题的特征有限元Galerkin形式,研究了此方法的收敛性,并给出了L2(Ω)及H1(Ω)的最优阶误差估计。结果表明,该方法是求解非线性对流扩散方程的有效方法。 相似文献
17.
18.
于顺霞 《天津师范大学学报(自然科学版)》2014,(2):9-11,15
研究一类二阶双曲型方程.通过引入空间和时间的一阶导数得到了混合Galerkin变分形式,进而导出方程的H1-Galerkin混合有限元方法的二层全离散格式,其中时间方向采用中心差商离散,得到了未知函数及流量的最优阶误差估计. 相似文献
19.
本文介绍和分析了一类具有强对称应力张量的非线性弹性问题的全增强混合有限元方法。这种方法除了包括通常线弹性问题 中的应力张量和位移外,还把应变张量作为辅助未知量。通过引入迦辽金最小二乘项,我们得到了两层鞍点算子方程来作为我们的结果弱方程。为了得到离散增强方程的适定性,我们采用分片常量多项式去逼近应变张量和分片线性多项式去逼近应力张量和位移,并且我们也得到了最优阶误差估计。最后,数值例子验证我们的理论分析。 相似文献