首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cell adhesion molecules (CAMs) have been implicated in the control of a wide variety of cellular processes, such as cell adhesion, polarization, survival, movement, and proliferation. Nectins have emerged as immunoglobulin-like CAMs that participate in calcium-independent cell-cell adhesion by homophilic and heterophilic trans-interactions with nectins and nectin-like molecules. Nectin-based cell-cell adhesion exerts its function independently or in cooperation with other CAMs including cadherins and is essential for the formation of intercellular junctions, including adherens junctions, tight junctions, and puncta adherentia junctions. Nectins cis-interact with integrin αvβ3 and platelet-derived growth factor receptor and facilitate their signals to regulate the formation and integrity of intercellular junctions and cell survival. Nectins intracellularly associate with peripheral membrane proteins, including afadin and Par-3. This review focuses on recent progress in understanding the interactions of nectins with other transmembrane and peripheral membrane proteins to exert pleiotropic functions. Received 27 June 2007; received after revision 14 August 2007; accepted 12 September 2007  相似文献   

2.
We have proposed a chemical chaperone therapy for lysosomal diseases, based on a paradoxical phenomenon that an exogenous competitive inhibitor of low molecular weight stabilizes the target mutant molecule and restores its catalytic activity as a molecular chaperone intracellularly. After Fabry disease experiments, we investigated a new synthetic chaperone compound N-octyl-4-epi-β-valienamine (NOEV) in a GM1-gangliosidosis model mice. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced the substrate storage, and clinically improved neurological deterioration. We hope that chemical chaperone therapy will prove useful for some patients with GM1-gangliosidosis and potentially other lysosomal storage diseases with central nervous system involvement. Received 10 October 2007; received after revision 31 October 2007; accepted 6 November 2007  相似文献   

3.
Functions and transport of silicon in plants   总被引:8,自引:0,他引:8  
Silicon exerts beneficial effects on plant growth and production by alleviating both biotic and abiotic stresses including diseases, pests, lodging, drought, and nutrient imbalance. Recently, two genes (Lsi1 and Lsi2) encoding Si transporters have been identified from rice. Lsi1 (low silicon 1) belongs to a Nod26-like major intrinsic protein subfamily in aquaporin, while Lsi2 encodes a putative anion transporter. Lsi1 is localized on the distal side of both exodermis and endodermis in rice roots, while Lsi2 is localized on the proximal side of the same cells. Lsi1 shows influx transport activity for Si, while Lsi2 shows efflux transport activity. Therefore, Lsi1 is responsible for transport of Si from the external solution to the root cells, whereas Lsi2 is an efflux transporter responsible for the transport of Si from the root cells to the apoplast. Coupling of Lsi1 with Lsi2 is required for efficient uptake of Si in rice. Received 21 December 2007; received after revision 29 April 2008; accepted 15 May 2008  相似文献   

4.
Complex diseases arise from a combination of heritable and environmental factors. The contribution made by environmental factors may be mediated through epigenetics. Epigenetics is the study of changes in gene expression that occur without a change in DNA sequence and are meiotically or mitotically heritable. Such changes in gene expression are achieved through the methylation of DNA, the post-translational modifications of histone proteins, and RNA-based silencing. Epigenetics has been implicated in complex diseases such as cancer, schizophrenia, bipolar disorder, autism and systemic lupus erythematosus. The prevalence and severity of these diseases may be influenced by factors that affect the epigenotype, such as ageing, folate status, in vitro fertilization and our ancestors’ lifestyles. Although our understanding of the role played by epigenetics in complex diseases remains in its infancy, it has already led to the development of novel diagnostic methods and treatments, which augurs well for its future health benefits. Received 6 December 2006; received after revision 29 January 2007; accepted 15 March 2007  相似文献   

5.
Refsum disease is a rare, inherited neurodegenerative disorder characterized by accumulation of the dietary branched-chain fatty acid phytanic acid in plasma and tissues caused by a defect in the alphaoxidation pathway. The accumulation of phytanic acid is believed to be the main pathophysiological cause of the disease. However, the exact mechanism(s) by which phytanic acid exerts its toxicity have not been resolved. In this study, the effect of phytanic acid on mitochondrial respiration was investigated. The results show that in digitonin-permeabilized fibroblasts, phytanic acid decreases ATP synthesis, whereas substrate oxidation per se is not affected. Importantly, studies in intact fibroblasts revealed that phytanic acid decreases both the mitochondrial membrane potential and NAD(P)H autofluorescence. Taken together, the results described here show that unesterified phytanic acid exerts its toxic effect mainly through its protonophoric action, at least in human skin fibroblasts. Received 4 August 2007; received after revision 26 September 2007; accepted 10 October 2007 J. C. Komen, F. Distelmaier: These authors contributed equally to this work.  相似文献   

6.
The surge in apoptosis research and the discovery of the phosphatidylserine binding properties of annexin A5 have propelled a tremendous interest in cell death detection technologies. In the past years, annexin A5 has evolved from an efficient assay for detection of apoptotic cells in vitro to an in vivo molecular imaging technology with potential clinical use. A second key discovery, the specific internalization properties of annexin A5, has opened the opportunity to use annexin A5 for therapeutic applications. Annexin A5-mediated internalization creates a novel therapeutic platform for targeted drug delivery and cell entry to treat various diseases, including cancer and cardiovascular disease. Received 29 June 2007; received after revision 19 July 2007; accepted 15 August 2007  相似文献   

7.
Polyisoprenyl phosphates: natural antiinflammatory lipid signals   总被引:1,自引:0,他引:1  
Lipoxins (LX) and aspirin-triggered 15-epimer LX are leukocyte-derived eicosanoids generated during host defense that serve as down-regulatory signals. The specific intracellular events that govern cellular responses to inhibitory extracellular signals are of wide interest in order to understand pivotal intracellular events in diseases characterized by enhanced inflammatory responses, such as asthma, rheumatoid arthritis and atherosclerosis. We recently uncovered a novel role for polyisoprenyl phosphates, in particular presqualene diphosphate (PSDP), as natural down-regulatory signals in human neutrophils that directly inhibit phospholipase D and superoxide anion generation. Activation of LXA4 receptors (ALXR) reverses proinflammatory receptor-initiated decrements in PSDP and inhibits cellular responses. These findings represent evidence for a novel paradigm for lipid-protein interactions in the control of cellular responses, namely receptor-initiated degradation of repressor lipids that is subject to regulation by aspirin treatment via the actions of aspirin-triggered 15-epimer LX at the ALXR, and identify new templates for antiinflammatory drugs by design.  相似文献   

8.
Hippocrates’ assertion that ‘what the lance does not heal, fire will’ underscores the fact that for thousands of years heat has been used to treat a variety of diseases, including cancer. Indeed, spontaneous tumor remission has been observed in patients following feverish infection [1], and expression of activated oncogenes, such as Ras, can render tumor cells sensitive to heat compared with normal cells [2, 3]. In the past, a primary drawback to the use of heat as a clinical therapy was the inability to selectively focus heat to tumors in situ. Of late, however, several approaches have been devised to deliver heat more precisely, including the use of heated nanoparticles, making hyperthermia a more clinically tractable treatment option [4, 5]. Despite these practical advances, the mechanisms responsible for heat shock-induced cell death remain controversial and ill-defined. In this Visions and Reflections we discuss recent findings surrounding the initiation of heat shock-induced apoptosis, and propose future areas of research. Received 17 March 2007; received after revision 25 April 2007; accepted 22 May 2007  相似文献   

9.
Tight junctions (TJs) create a paracellular permeability barrier. Although reactive oxygen species have been implicated as mediators of inflammation in inflammatory bowel diseases, their influence on the function of colonic epithelial TJs remains unknown. Oxidative stress-mediated colonic epithelial permeability was significantly attenuated by a p38 mitogen-activated protein (MAP) kinase inhibitor, SB203580. Although the amount of TJ proteins was not altered, hydrogen peroxide (H2O2) changed the localization of claudin-4 protein from an NP-40 insoluble fraction to a soluble fraction and from an apical TJ to lateral membrane. The p38 MAP kinase inactivator Wip1 significantly attenuated phosphorylation of p38 MAP kinase, and oxidative stress mediated permeability. H2O2-induced changes in claudin-4 localization were abolished by SB203580 pretreatment as well as Wip1-expressing adenovirus infection. This is the first study to demonstrate that exogenous Wip1 functions to protect oxidative stress-mediated colonic mucosal permeability and that H2O2-induced claudin-4 dislocalization is abolished by Wip1. Received 14 June 2007; received after revision 8 October 2007; accepted 8 October 2007  相似文献   

10.
Molecular mechanisms of lymphatic vascular development   总被引:8,自引:1,他引:7  
Lymphatic vasculature has recently emerged as a prominent area in biomedical research because of its essential role in the maintenance of normal fluid homeostasis and the involvement in pathogenesis of several human diseases, such as solid tumor metastasis, inflammation and lymphedema. Identification of lymphatic endothelial specific markers and regulators, such as VEGFR-3, VEGF-C/D, PROX1, podoplanin, LYVE-1, ephrinB2 and FOXC2, and the development of mouse models have laid a foundation for our understanding of the major steps controlling growth and remodeling of lymphatic vessels. In this review we summarize recent advances in the field and discuss how this knowledge as well as use of model organisms, such as zebrafish and Xenopus, should allow further in depth analysis of the lymphatic vascular system. Received 26 January 2007; received after revision 5 March 2007; accepted 29 March 2007  相似文献   

11.
Targeted inhibition of Livin resensitizes renal cancer cells towards apoptosis   总被引:10,自引:0,他引:10  
Cancer cells are typically characterized by apoptosis deficiency. In order to investigate a possible role for the anti-apoptotic livin gene in renal cell cancer (RCC), we analyzed its expression in tumor tissue samples and in RCC-derived cell lines. In addition, we studied the contribution of livin to the apoptotic resistance of RCC cells by RNA interference (RNAi). Livin gene expression was detected in a significant portion of RCC tumor tissue specimens (13/14, 92.9%) and tumor-derived cell lines (12/15, 80.0%). Moreover, targeted inhibition of livin by RNAi markedly sensitized RCC cells towards proapoptotic stimuli, such as UV irradiation or the chemotherapeutic drugs etoposide, 5-fluorouracil, and vinblastine. These effects were specific for livin expressing tumor cells. We conclude that livin can contribute significantly to the apoptosis resistance of RCC cells. Targeted inhibition of livin could represent a novel therapeutic strategy to increase the sensitivity of renal cancers towards pro-apoptotic agents. Received 30 November 2006; received after revision 22 February 2007; accepted 20 March 2007  相似文献   

12.
CYLD is a protein with tumor suppressor properties which was originally discovered associated with cylindromatosis, an inherited cancer exclusively affecting the folicullo-sebaceous-apocrine unit of the epidermis. CYLD exhibits deubiquitinating activity and acts as a negative regulator of NF-κB and JNK signaling through its interaction with NEMO and TRAF2. Recent data suggest that this is unlikely to be its unique function in vivo. CYLD has also been shown to control other seemingly disparate cellular processes, such as proximal T cell receptor signaling, TrkA endocytosis and mitosis. In each case, this enzyme appears to act by regulating a specific type of polyubiquitination, K63 polyubiquitination, that does not result in recognition and degradation of proteins by the proteasome but instead controls their activity through diverse mechanisms. Received 6 October 2007; received after revision 2 November 2007; accepted 23 November 2007  相似文献   

13.
Treatment of alloxan diabetic rats with the antioxidant S-allyl cysteine sulfoxide (SACS) isolated from garlic (Allium sativum Linn)., ameliorated the diabetic condition almost to the same extent as did glibenclamide and insulin. In addition, SACS controlled lipid peroxidation better than the other two drugs. Furthermore, SACS significantly stimulated in vitro insulin secretion from B cells isolated from normal rats. Hence it can be surmised that the beneficial effects of SACS could be due to both its antioxidant and its secretagogue actions. The former effect is more predominant and the latter is only secondary. These effects highlight the therapeutic value of garlic, which is a component of many diets.  相似文献   

14.
Summary Some recent evidence on the benefits and hazards of elevated dosages of vitamins is summarized. Special emphasis is given on the safety of vitamins A, D, K1 and B6. Furthermore, the possibly beneficial effects of vitamins for athletic performance as well as the preventive potential of antioxidative vitamins and of carotenoids against cancer are discussed.  相似文献   

15.
Summary Exudates and extractives of roots ofRuellia tuberosa, containing 2,6-dimethoxyquinone, acacetin and a C16-quinone, have been shown to produce significant protective and curative actions againstFusarium oxysporum-incited wilt of safflower. The potentiality of the root extractives as a foliar fungicide is appraised.  相似文献   

16.
The efficiency of drug research and development has paradoxically declined over the last decades despite major scientific and technological advances, promoting new cost-effective strategies such as drug repositioning by systematic screening for new actions of known drugs. Here, we performed a screening for positive allosteric modulators (PAMs) at melanocortin (MC) receptors. The non-steroidal anti-inflammatory drug fenoprofen, but not the similar compound ibuprofen, presented PAM activity at MC3, MC4, and MC5 receptors. In a model of inflammatory arthritis, fenoprofen afforded potent inhibition while ibuprofen was nearly inactive. Fenoprofen presented anti-arthritic actions on cartilage integrity and synovitis, effects markedly attenuated in Mc3r?/? mice. Fenoprofen displayed pro-resolving properties promoting macrophage phagocytosis and efferocytosis, independently of cyclooxygenase inhibition. In conclusion, combining repositioning with advances in G-protein coupled receptor biology (allosterism) may lead to potential new therapeutics. In addition, MC3 PAMs emerged as a viable approach to the development of innovative therapeutics for joint diseases.  相似文献   

17.
Corticotropin-releasing factor (CRF), also termed corticotropin-releasing hormone (CRH) or corticoliberin, is the major regulator of the adaptive response to internal or external stresses. An essential component of the adaptation mechanism is the adrenal gland. CRF regulates adrenal function indirectly through the central nervous system (CNS) via the hypothalamic-pituitary-adrenal (HPA) axis and via the autonomic nervous system by way of locus coeruleus (LC) in the brain stem. Accumulating evidence suggests that CRF and its related peptides also affect the adrenals directly, i.e. not through the CNS but from within the adrenal gland where they form paracrine regulatory loops. Indeed, CRF and its related peptides, the urocortins (UCNs: UCN1, UCN2 and UCN3), their receptors CRF type 1 (CRF1) and 2 (CRF2) as well as the endogenous pseudo-receptor CRF-binding protein (CRF-BP) are all expressed in adrenal cortical, medullary chromaffin and resident immune cells. The intra-adrenal CRF-based regulatory system is complex and depends on the balance between the local concentration of CRF ligands and the availability of their receptors. Received 19 December 2006; received after revision 20 February 2007; accepted 26 March 2007  相似文献   

18.
Integrins and cardiovascular disease   总被引:2,自引:0,他引:2  
Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor α IIbβ 3 , has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of α IIbβ 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system.  相似文献   

19.
NOD-like receptors (NLRs) comprise a family of cytosolic proteins that have been implicated as ancient cellular sentinels mediating protective immune responses elicited by intracellular pathogens or endogenous danger signals. Genetic variants in NLR genes have been associated with complex chronic inflammatory barrier diseases (e.g. Crohn disease, bronchial asthma). In this review, we focus on the molecular pathophysiology of NLRs in the context of chronic inflammatory diseases and pinpoint recent advances in the evolutionary understanding of NLR biology. We propose that the field of NLRs may serve as a prototype for how a comprehensive understanding of an element of the immunological barrier will eventually lead to the development of targeted diagnostic, therapeutic and/or preventive strategies. Received 29 October 2007; received after revision 10 December 2007; accepted 19 December 2007  相似文献   

20.
Résumé En conclusion de quelques nouvelles réactions et de la mesure de son spectre d'absorption, la formule I est proposée pour la Sempervirine C19H16N2, l'alcaloïde jaune deGelsemium sempervirens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号